Open Access

Epoxidation of natural limonene extracted from orange peels with hydrogen peroxide over Ti-MCM-41 catalyst


Cite

1. Ciriminna, R., Lomeli-Rodrigues, M., Demma Cara, P., Lopez-Sanchez, J.A. & Pagliaro, M. (2014). Limonene: a versatile chemical of the bioeconomy, Chem. Comm. 50, 15273–15466. DOI: 10.1039/C4CC06147K.10.1039/C4CC06147Open DOISearch in Google Scholar

2. Monteiro, J.L.F. & Veloso, C.O. (2004). Catalytic conversion of terpenes into fine chemicals. Top. Catal. 27, 169–180. DOI: 10.1023/B:TOCA.0000013551.99872.8d.10.1023/B:TOCA.0000013551.99872.8dOpen DOISearch in Google Scholar

3. Firdaus, M. & Meier, M.A.R. (2013). Renewable polyamides and polyurethanes derived from limonene. Green Chem. 15, 269–536. DOI: 10.1039/C2GC36557J.10.1039/C2GC36557JOpen DOISearch in Google Scholar

4. Santa, A.M.A., Vergara, J.C.G., Palacio, L.A.S. & Echavarria, A.I. (2008). Limonene epoxidation by molecular sieves zincophosphates and zincochromates. Catal. Today 133, 80–86. DOI: 10.1016/j.cattod.2007.12.025.10.1016/j.cattod.2007.12.025Open DOISearch in Google Scholar

5. Caovilla, M., Caovilla, A., Pergher, S.B.C, Esmelindro, M.C., Fernandes, Ch., Dariva, C., Bernardo-Gusmao, K., Oestreicher, E.G. & Antunes, O.A.C. (2008). Catalytic oxidation of limonene, a-pinene and b-pinene by the complex [FeIII(BPMP) Cl(m-O)FeIIICl3] biomimetic to MMO enzyme. Catal. Today 133, 695–698. DOI: 10.1016/j.cattod.2007.12.107.10.1016/j.cattod.2007.12.107Open DOISearch in Google Scholar

6. Corma, A., Iborra, S. & Velty, A. (2007). Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502. DOI: 10.1021/cr050989d.10.1021/cr050989dOpen DOISearch in Google Scholar

7. Wróblewska, A. (2014). The epoxidation of limonene over the TS-1 and Ti-SBA-15 catalysts. Molecules 19, 19907–19922. DOI: 10.3390/molecules191219907.10.3390/191219907Open DOISearch in Google Scholar

8. Wilborn, P.A., Chu, F. & Tang, Ch. (2013). Progress in renewable polymers from natural terpenes, terpenoids and rosin. Macromol. Rapid Comm. 34, 8–37. DOI: 10.1002/marc.201200513.10.1002/marc.201200513Search in Google Scholar

9. Kallrath, G. & Biegler, H. (1968). U.S. Patent No. 3383172. Washington, D.C.: U.S. Patent and Trademark Office.Search in Google Scholar

10. Ballmoos, R., Chu, C., Landis, M. & Derouane, E. (1989). U.S. Patent No. 4880611 A. Washington, D.C.: U.S. Patent and Trademark Office.Search in Google Scholar

11. Garcia-Martinez, J. & Li, K. (2015). Mesoporous zeolites: preparation, characterization and applications, Wiley-VCH, Verlag GmbH & Co., Weinheim, Germany, 19–26.Search in Google Scholar

12. Iuliean, V., Bilba, A.N., Birsa, L.M. & Luchian, C. (2008). Sorption properties of MCM-41 mesoporous materials. Acta Chem. Iasi 16, 47–60.Search in Google Scholar

13. Rogerio, A.A. Melo, Marcus, V. Giotto, João, Rochab, Ernesto & A. Urquieta-González (1999). MCM-41 ordered mesoporous molecular sieves synthesis and characterization. Mat. Res. 2, 173–179. DOI: 10.1590/S1516-14391999000300010.10.1590/S1516-14391999000300010Open DOISearch in Google Scholar

14. Grun, M., Unger, K.K., Matsumoto, A., Tsutsumi, K. (1999). Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Micropor. Mesopor. Mat. 27, 207–216. DOI: 10.1016/S1387-1811(98)00255-8.10.1016/S1387-1811(98)00255-8Open DOISearch in Google Scholar

15. Wróblewska, A. & Makuch, E. (2013). Studies on the deactivation of Ti-MCM-41 catalyst in the process of allyl alcohol epoxidation. Pol. J. Chem. Technol. 15, 111–115. DOI: 10.2478/pjct-2013-0078.10.2478/pjct-2013-0078Open DOISearch in Google Scholar

16. Brill, W.F. (1963). The origin of epoxides in the liquid phase oxidation of olefins with molecular oxygen. J. Am. Chem. Soc. 85, 141–143.10.1021/ja00885a006Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering