Open Access

Impact of heating rate and solvent on Ni-based catalysts prepared by solution combustion method for syngas methanation


Cite

1. Kopyscinski, J., Schildhauer, T.J. & Biollaz, S.M.A. (2010). Production of synthetic natural gas (SNG) from coal and dry biomass-A technology review form 1950 to 2009. Fuel. 89(8), 1763-1783. DOI: 10.1016/j.fuel.2010.01.027.10.1016/j.fuel.2010.01.027Search in Google Scholar

2. Gao, J.J., Wang, Y.L., Ping, Y., Hu, D.C., Xu, G.W., Gu, F.N. & Su, F.B. (2012). A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Adv. 2(6), 2358-2368. DOI: 10.1039/c2ra00632d.10.1039/c2ra00632dSearch in Google Scholar

3. Xavier, K.O., Sreekala, R., Rashid, K.K.A., Yusuf, K.K.M. & Sen, B. (1999). Doping effects of cerium oxide on Ni/Al2O3 catalysts for methanation. Catal. Today. 49(1-3), 17-21. DOI: 10.1016/S0920-5861(98)00403-9.10.1016/S0920-5861(98)00403-9Search in Google Scholar

4. Derekaya, F.B. & Yasar, G. (2011). The CO methanation over NaY-zeolite supported Ni/Co3O4, Ni/ZrO2, Co3O4/ ZrO2 and Ni/Co3O4/ZrO2 catalysts. Catal. Commun. 13(1), 73-77. DOI: 10.1016/j.catcom.2011.06.024.10.1016/j.catcom.2011.06.024Search in Google Scholar

5. Kopyscinski, J., Schildhauer, T.J. & Biollaz, S.M.A. (2011). Fluidized-Bed methanation: Interaction between kinetics and mass transfer. Ind. Eng. Chem. Res. 50(5), 2781-2790. DOI: 10.1021/ie100629k.10.1021/ie100629kSearch in Google Scholar

6. Duan, X.Z., Qian, G., Zhou, X.G., Sui, Z.J., Chen, D. & Yuan, W.K. (2011). Tuning the size and shape of Fe nanoparticles on carbon nanofibers for catalytic ammonia decomposition. Appl. Catal. B: Environ. 101(3-4), 189-196. DOI: 10.1016/j. apcatb.2010.09.017.Search in Google Scholar

7. Utaka, T., Takeguchi, T., Kikuchi, R. & Eguchi, K. (2003). CO removal from reformed fuels over Cu and precious methal catalysts. Appl. Catal. A: Gen. 246(1), 117-124. DOI: 10.1016/ S0926-860X(03)00048-6.10.1016/S0926-860X(03)00048-6Search in Google Scholar

8. Vannice, M.A. (1975). The catalytic synthesis of hydrocarbons form H2/CO mixtures over the group VIII methas: 1. The specific activities and product distributions of supported metals. J. Catal. 37(3), 449-461. DOI: 10.1016/00214-9517(75)90181-5.Search in Google Scholar

9. Kim, S.H., Lee, W.D. & Lee, H.I. (2013). Effect of CeO2 on CO removal over CeO2-modified Ni catalyst in CO-rich syngas. Korean J. Chem. Eng. 30(4), 860-863. DOI: 10.1007/ s11814-013-0007-x.10.1007/s11814-013-0007-xSearch in Google Scholar

10. Wieslawa, C.B. (2013). Infl uence of the exchanged metal ions (Cu, Co, Ni and Mn) on the selective catalytic reduction of NO with hydrocarbons over modified ferrierite. Pol. J. Chem. Tech. 15(2), 10-15. DOI: 10.2478/pjct-2013-001810.2478/pjct-2013-0018Search in Google Scholar

11. Shi, P. & Liu, C.J. (2009). Characterization of silica supported nickel catalyst for methanation with improved activity by room temperature plasma treatment. Catal. Lett. 133(1-2), 112-118. DOI: 10.1007/s10562-009-0163-0.10.1007/s10562-009-0163-0Search in Google Scholar

12. Zhao, A.M., Ying, W.Y., Zhang, H.T., Ma, H.F. & Fang, D.Y. (2012). Ni-Al2O3 catalysts prepared by solution combustion method for syngas methanation. Catal. Commun. 17, 34-38. DOI: 10.1016/j.catcom.2011.10.010.10.1016/j.catcom.2011.10.010Search in Google Scholar

13. Zhang, J., Xu, H.Y., Jin, X.L., Ge, Q.J. & Li, W.Z. (2005). Characterizations and activities of the nano-sized Ni/Al2O3 and Ni/La-Al2O3 catalysts for NH3 decomposition. Appl. Catal. A: Gen. 290(1-2), 87-96. DOI: 10.1016/j.apcata.2005.05.020.10.1016/j.apcata.2005.05.020Search in Google Scholar

14. Guimon, C., Auroux, A., Romero, E. & Monzon, A. (2003). Acetylene hydrogenation over Ni-Si-Al mixed oxides prepared by sol-gel technique. Appl. Catal. A: Gen. 251(1), 199-214. DOI: 10.1016/S0926-860X(03)00318-1.10.1016/S0926-860X(03)00318-1Search in Google Scholar

15. Zhang, Y.H., Xiong, G.X., Sheng, S.S., Liu, S.L. & Yang, W.S. (1999). Interaction of NiO with γ-Al2O3 supporter of NiO/γ-Al2O3 catalysts. Acta Phys. Chem. Sim. (Wuli Huaxue Xuebao) 15(8), 735-741. DOI: 10.3866/PKU.WHXB19990813.10.3866/PKU.WHXB19990813Search in Google Scholar

16. Rynkowski, J.M., Paryjczak, T. & Lenik, M. (1993). On the nature of oxidic nickel phases in NiO/ γ-Al2O3 catalysts. Appl. Catal. A: Gen. 106(1), 73-82. DOI: 10.1016/0926-860X(93)80156-K.10.1016/0926-860X(93)80156-KSearch in Google Scholar

17. Vos, B., Poels, E. & Bliek, A. (2001). Impact of calcination conditions on the structure of alumina-supported nickel particles. J. Catal. 198(1), 77-88. DOI: 10.1006/jcat.2000.3082.10.1006/jcat.2000.3082Search in Google Scholar

18. Zou, X.J., Wang, X.G. & Li, L. (2010). Development of highly effective supported nickel catalysts for pre-reforming of liquefied petroleum gas under low steam to carbon molar ratios. Int. J. Hydrogen. Energ. 35(22), 12191-12200. DOI: 10.1016/j.ijhydene.2010.08.080.10.1016/j.ijhydene.2010.08.080Search in Google Scholar

19. Yang, J., Wang, X.G., Li, L., Shen, K., Lu, X.G. & Ding, W.Z. (2010). Catalytic conversion of tar from hot coke oven gas using 1-methylnaphthalene as a tar model compound. Appl. Catal. B: Environ. 96(1-2), 232-237. DOI: 10.1016/j. apcatb.2010.02.026.Search in Google Scholar

20. Koo, K.Y., Roh, H.S., Seo, Y.T., Seo, D.J., Yoon, W.L. & Park, S.B. (2008). A highly effective and stable nano-sized Ni/MgO- Al2O3 catalyst for gas to liquids (GTL) process. Int. J. Hydrogen. Energ. 33(8), 2036-2043. DOI: 10.1016/j. ijhydene.2008.02.029.Search in Google Scholar

21. Xin, Q. & Luo, M.F. (2009). Xian Dai Cui Hua Yan Jiu Fang Fa (1st ed). Beijing: Science Press.Search in Google Scholar

22. Gao, J.J., Jia, C., Zhang, M.J., Gu, F., Xu, G.W. & Su, F.B . (2013). Effect of nickel nanoparticle size in Ni/α-Al2O3 on CO methanation reaction for the production of synthetic natural gas. Catal. Sci. Technol. 3(8), 2009-2015. DOI: 10.1039/ C3CY00139C.10.1039/c3cy00139cSearch in Google Scholar

23. Chen, D., Christensen, K.O., Ochoa-Fernandez, E., Yu, Z.X., Totdal, B., Latorre, N., Monzon, A. & Holmen, A. (2005). Synthesis of carbon nanofibers: effects of Ni crystal size during decomposition. J. Catal. 229(1), 82-96. DOI: 10.1016/j. jcat.2004.10.017.Search in Google Scholar

24. Jimeneza, V., Sancheza, P., Panagiotopouloub, P., Valverdea, J.L. & Romeroa, A. (2010). Methanation of CO, CO2, and selective methanation of CO, in mixtures of CO and CO2, over ruthenium carbon nanofibers catalysts. Appl. Catal. A: Gen. 390(1-2), 35-44. DOI: 10.1016/j.apcata.2010.09.0 26. Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering