Cite

1. Naik, S.P. & Fernandes, J.B. (1999). Temperature programmed desorption studies on a new active zinc oxide catalyst. Thermochim. Acta 332(1), 21-25. DOI: 10.1016/ S0040-6031(99)00063-5.10.1016/S0040-6031(99)00063-5Search in Google Scholar

2. Huang, W.J., Fang, G.C. & Wang, C.C. (2005). A nanometer-ZnO catalyst to enhance the ozonation of 2,4,6-trichlorophenol in water. Coll. Surf. A, 260, 45-51. DOI: 10.1016/j.colsurfa.2005.01.031.10.1016/j.colsurfa.2005.01.031Search in Google Scholar

3. Jung, H., Choi, H. (2006). Catalytic decomposition of ozone and para - Chlorobenzoic acid (pCBA) in the presence of nanosized ZnO. Appl. Catal. B, 66, 288-294. DOI: 10.1016/j. apcatb.2006.03.009.Search in Google Scholar

4. Zhai, X., Chen, Z., Zhao, S., Wang, H. & Yang, L. (2010). Enhanced ozonation of dichloroacetic acid in aqueous solution using nanometer ZnO powders. J Environ. Sci., 22(10) 1527-1533. DOI: 10.1016/S1001-0742(09)60284-9.10.1016/S1001-0742(09)60284-9Search in Google Scholar

5. Muruganandham, M. & Wu, J. (2008). Synthesis, characterization and catalytic activity of easily recyclable zinc oxide nanobundles. Appl. Catal. B. Environ., 80, 32-41. DOI: 10.1016/j.apcatb.2007.11.006.10.1016/j.apcatb.2007.11.006Search in Google Scholar

6. Dong, Y., Wang, G., Jiang, P., Zhang, A., Yue, L., Zhang, X. (2011). Simple preparation and catalytic properties of ZnO for ozonation degradation of phenol in water, Chin. Chem. Lett., 22, 209-212. DOI: 10.1016/j.cclet.2010.10.010.10.1016/j.cclet.2010.10.010Search in Google Scholar

7. Xu, Z., Ben, Y., Chen, Z. & Qi, F. (2013). Facile synthesis of snowfl ake-like ZnO nanostructures at low temperature and their super catalytic activity for the ozone decomposition. Mater. Res. Bull., 48, 1725-1727. DOI: 10.1016/j.materresbull.2012.11.095.10.1016/j.materresbull.2012.11.095Search in Google Scholar

8. Chauvin, S., Saussey, J., Lavalley, J. & Djega-Mariadassou, G. (1986). Definition of polycrystalline ZnO catalytic sites and their role in CO hydrogenation. Appl. Catal. 25(1-2), 59-68. DOI: 10.1016/S0166-9834(00)81222-1.10.1016/S0166-9834(00)81222-1Search in Google Scholar

9. Rekha, K., Nirmala, M., Nair, M. & Anukaliani, A. (2010). Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Physica B, 405, 3180-3185. DOI: 10.1016/j.physb.2010.04.042.10.1016/j.physb.2010.04.042Search in Google Scholar

10. Bellini, J., Morelli, M. & Kiminami, R. (2002). Electrical properties of polycrystalline ZnO: Cu obtained from freeze- -dried ZnO + copper (II) acetate powders Mater. Sci. Mater. Electron. 13 (8), 485-489, DOI: 10.1023/a:1016160204435.10.1023/A:1016160204435Search in Google Scholar

11. Dodd, A., McKinley, A., Tsuzuki, T. & Saunders, M. (2009). Tailoring the Photocatalytic Activity of Nanoparticulate Zinc Oxide by Transition Metal Oxide Doping. Mater. Chem. Phys. 114, 382-386. DOI: 10.1016/j.matchmphys.2008.09.041.Search in Google Scholar

12. Nikolov, P., Milenova, K. & Mehandjiev, D. (2008). Decomposition of ozone over pure and doped with Cu and Mn zinc oxide. C. R. Acad. Bulg. Sci. 61, 1127.Search in Google Scholar

13. Xie, J., Li, Y., Zhao, W., Bian, L. & Wei, Y. (2011). Simple fabrication and photocatalytic activity of ZnO particles with different morphologies. Powder. Tech., 207, 140-144. DOI: 10.1016/j.powtec.2010.10.019.10.1016/j.powtec.2010.10.019Search in Google Scholar

14. Saedy, S., Haghighi, M. & Amirkhosrow, M. (2012). Hydrothermal synthesis and physicochemical characterization of CuO/ZnO/Al2O3 nanopowder. Part I: Effect of crystallization time. Particuology 10, 729-736. DOI: 10.1016/j.partic.2012.05.001.10.1016/j.partic.2012.05.001Search in Google Scholar

15. Hung, C. (2009). Synthesis, characterization and performance of CuO/La2O3 composite catalyst for ammonia catalytic oxidation. Powder. Tech., 196, 56-61. DOI: 10.1016/j. powtec.2009.07.001.Search in Google Scholar

16. Diaconu, M., Schmidt, H., Pöppl, A.R., Böttcher, R., Hoentsch, J., Rahm, A., Hochmuth, H., Lorenz, M. & Grundmann, M. (2005). EPR study on magnetic Zn1−xMnxO. Superlat. Microst. 38, 413-420. DOI: 10.1016/j.spmi.2005.08.012.10.1016/j.spmi.2005.08.012Search in Google Scholar

17. Singh, S., Chakradhar, R., Rao, J. & Karmakar, B., (2010). EPR, optical absorption and photoluminescence properties of MnO2 doped 23B2O3-5ZnO-72Bi2O3 glasses. Physica B, 405, 2157-2161. DOI: 10.1016/j.physb.2010.01.123.10.1016/j.physb.2010.01.123Search in Google Scholar

18. Clavel, G., Willinger, M., Zitoun, D. & Pinna, N., (2007). Solvent Dependent Shape and Magnetic Properties of Doped ZnO Nanostructures. Adv. Funct. Mater., 17(6), 3159-3169. DOI: 10.1002/adfm.200601142.10.1002/adfm.200601142Search in Google Scholar

19. Vethanathan, S., Brightson, M., Sundar, S. & Perumal, S., Synthesis of Mn doped ZnO nanocrystals by solvothermal route and its characterization. (2011). Mater. Chem. Phys., 125, 872-875. DOI: 10.1016/j.matchemphys.2010.09.029.10.1016/j.matchemphys.2010.09.029Search in Google Scholar

20. Bogomolova, D., Jachkin, A., Krasil‘nikova, A., Bogdanov, L., Fedorushkova, B. & Khalilev, D. (1990). EPR of transition metals in fl uoroaluminate glasses. J. Non-Crystall Solids. 125, 32-39. DOI: 10.1016/0022-3093(90)90320-L.10.1016/0022-3093(90)90320-LSearch in Google Scholar

21. Srinivasan, G. & Kumar, J. (2008). Effect of Mn-doping on the microstructures and optical properties of sol gel derived ZnO thin films. J. Cryst. Growth. 310, 1841-1846. DOI: 10.1016/j. jcrysgro.2007.10.056.Search in Google Scholar

22. Xu, C., Cao, L., Su, G., Liu, W., Liu, H., Yu, Y. & Qu, X. (2010). Preparation of ZnO/Cu2O compound photocatalyst and application in treating organic dyes. J. Hazard. Mater. 176, 807-813. DOI: 10.1016/j.jhazmat.2009.11.106.10.1016/j.jhazmat.2009.11.10620007008Search in Google Scholar

23. Yan, Y., Al-Jassim, M.M. & Wei, S.H. (2006). Doping of ZnO by group-IB elements, Appl. Phys. Lett. 89, 181912. DOI: /10.1063/1.2378404.Search in Google Scholar

24. Milenova, K., Avramova, I. & Nikolov, P. (2013). Nanosized Cu/ ZnO catalytic systems -Characterization and activity toward ozone decomposition, J. Inter. Sci. Public.: Mater., Met. Technol., 7, Part 2, 462-471. Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering