Cite

1. Nair, L.S., Laurencin, C.T. (2007). Biodegradable polymers as biomaterials Prog. Polym. Sci. 32, 762-798. DOI: 10.1016/j. progpolymsci.2007.05.017.Search in Google Scholar

2. Oledzka, E., Sobczak, M. & Kołodziej, W.L. (2007). Polymers in medicine - review of past achievements. Polimery 11-12, 793, in Polish.Search in Google Scholar

3. Ryszkowska, J.L., Auguścik, M., Sheikh, A. & Boccaccini, A.R. (2010). Biodegradable polyurethane composite scaffolds containing Bioglass® for bone tissue engineering. Comp. Sci. Tech. 70, 1894-1908. DOI: 10.1016/j.compscitech.2010.05.011.10.1016/j.compscitech.2010.05.011Search in Google Scholar

4. Waśniewski, B., Auguścik, M., Parzuchowski, P., Zielecka, M. & Ryszkowska, J. (2012). Polycarbonate urethane nanocomposites with nanosilica for implants of the intervertebral disc. Polimery 11-12, 812, in Polish.10.14314/polimery.2012.812Search in Google Scholar

5. Domańska, A., Boczkowska, A., Izydorzak, M., Jaegermann, Z. & Kurzydłowski, K.J. (2010). Polyurethanes used in the endoprosthesis of joints. Pol. J. Chem. Tech. 12, 3, 10-14. DOI: 10.2478/v10026-010-0025-y.10.2478/v10026-010-0025-ySearch in Google Scholar

6. Jaegermanna, Z., Boczkowska, A., Paszewska, A. & Michałowski, S. (2008). Ceramic-polymer gradient composite for joint endoprosthesis application - preliminary report. Pr. Komis. Nauk Ceram. PAN, CERAMIKA, 101, 41-48, in PolishSearch in Google Scholar

7. Jaegermann, Z., Boczkowska, A., Domańska, A. & Michałowski, S. (2008). Composite biomaterial alumina-polyurethane. Pr. Inst. Szkła, Ceramiki, Materiałów Ogniotrwałych i Budowlanych 2, 7-22, in Polish.Search in Google Scholar

8. Gruin, I., Markiewicz, B., Ryszkowska, J., Pacułt, J., Lubaszka, J., Kocjan, R. & Pasik, J. (1993). ”The method of cold cure elastomers fabrication”, Know-how no WP/20/93 from 26.03.93 Politechnika Warszawska, in Polish.Search in Google Scholar

9. Boczkowska, A. & Gruin, I. (1999). Polyurethanes from crystalline prepolymers. Eur. Polym. J. 35, 1569-1579.10.1016/S0014-3057(98)00256-0Search in Google Scholar

10. Boczkowska, A. (2000). Structural polymers obtained from crystalline ether-urethane-isocyanate prepolymers. PhD thesis, Warszawa, in Polish.Search in Google Scholar

11. Izydorzak, M. (2009). Selection of polyurethanes with increased resistance to abrasive wear for biomedical applications. MSc Thesis - Politechnika Warszawska, Warszawa, in Polish.Search in Google Scholar

12. Wirpsza, Z. (1991). Polyurethanes. Chemistry, technology, applications. Warszawa: WNT, in Polish.Search in Google Scholar

13. Guess, J.F. & Campbell, J.S. (1995). Acoustic properties of some biocompatible polymers at body temperature. Ultrasound in Medicine & Biology Vol. 21(2), 273-277.10.1016/S0301-5629(94)00117-0Search in Google Scholar

14. Rudnik, E., Resiak, I. & Wojciechowski, C. (1998) Thermoanalytical investigations of polyurethanes for medical purposes. Thermochimica Acta 320, 285-289.10.1016/S0040-6031(98)00485-7Search in Google Scholar

15. Martin, D.J., Poole Warren, L.A., Gunatillake, P.A., Mc- Carthy, S.J., Meijs, G.F. & Schindhelm, K. (2000). Polydimethylsiloxane/ polyether-mixed macrodiol-based polyurethane elastomers:biostability. Biomaterials, 1021-1029.10.1016/S0142-9612(99)00271-9Search in Google Scholar

16. Ojha, U., Kulkarni, P., Faust, R. (2009). Syntheses and characterization of novel biostable polyisobutylene based thermoplastic polyurethanes. Polymer 50, 3448-3457.10.1016/j.polymer.2009.05.025Search in Google Scholar

17. Poussard, L., Burel, F., Couvercelle, J.P., Merhi, Y., Tabrizian, M. & Bunel, C. (2004). Hemocompatibilty of new ionic polyurethanes: infl uence of carboxylic group insertion modes. Biomaterials 25, 3473-3483. DOI: 10.1016/j.biomaterials. 2003.10.069.Search in Google Scholar

18. Yamamoto, K., Kiura, T., Nam, K., Funamoto, S., Ito, Y., Shiba, K., Katoh, A., Shimizu, S., Kurita, K., Higami, T., Masuzawa, T. & Kishida, A. (2011). Synthetic polymer-tissue adhesion Rusing an ultrasonic scalpel. Surg. Endosc. 25, 1270-1275. DOI: 10.1007/s00464-010-1357-7.10.1007/s00464-010-1357-720927542Search in Google Scholar

19. Żenkiewicz, M. (2000). Adhesion and modification of the surface layer of macromolecular materials. Warszawa, WNT, in Polish.Search in Google Scholar

20. Olczyk, W. (1968). Polyurethanes. Warszawa, WNT, in Polish.Search in Google Scholar

21. Rymuza, Z. (1986). Tribology of polymers sliding Warszawa, WNT, in Polish.Search in Google Scholar

22. Schwart, Ch.J. & Bahadur, S. (2006). Development and testing of a novel joint wear Simulator and investigation of the viability of an elastomeric polyurethane for total-joint arthroplasty devices. Wear 262, 332-339. DOI: 10.1016/j. wear.2006.05.018.Search in Google Scholar

23. Guan, J., Fujimoto, K.L., Sacks, M.S. & Wagner, W.R. (2005). Preperation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials 26, 3961. DOI: 10.1016/j.biomaterials.2004.10.018.10.1016/j.biomaterials.2004.10.018285758315626443Search in Google Scholar

24. Gorna, K. & Gogolewski, S. (2002). Biodegaradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(e-caprolactone)-poly(ethylene oxide) diols and various chain extenders. J. Biomed. Mater. Res., 60(4), 592-606.Search in Google Scholar

25. Guan, J., Sacks, M.S., Beckman, E.J. & Wagner, W.R. (2002). Synthesis, characterization, and cytocompatibility of elastomeric, biodegradable poly(ester-urethane)ureas based on poly(caprolactone) and putrescine. J. Biomed. Mater. Res. 61(3), 493-503.10.1002/jbm.1020412115475Search in Google Scholar

26. Gogolewski, S. & Gorna, K. (2007). Biodegradable polyurethane cancellous bone graft substites in the treatment of iliac crest defects. J. Biomed. Mater. Res. Part A, Volume 80A, Issue 1, 94-101. DOI: 10.1002/jbm.a.30834.10.1002/jbm.a.3083416960827Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering