Open Access

Application of Response Surface Methodology for Optimization of Permeabilization Process of Baker’s Yeast


Cite

1. Eberhard, A.M., Pedroni, V., Volpe, M. & Ferreira, M.L. (2004). Immobilization of catalase from Aspergillus niger on inorganic and biopolymeric supports for H2O2 decomposition. Appl. Catal. B: Enviro. 47, 153–163. DOI: 10.1016/j. apcatb.2003.08.007.Search in Google Scholar

2. Tarhan, L. (1995). Use of immobilized catalase to remove H2O2 used in the sterilisation of milk. Process Biochem. 30, 623–8. DOI: 10.1016/0032-9592(94)00066-2.10.1016/0032-9592(94)00066-2Search in Google Scholar

3. Venkateshwaran, G., Somashekar, D., Prakash, M.H., Agrawal, R., Basappa, S.C. & Joseph, R. (1999). Production and utilization of catalase using Saccharomyces cerevisiae. Process Biochem. 34, 187–191. DOI: 10.1016/S0032-9592(98)00087-9.10.1016/S0032-9592(98)00087-9Search in Google Scholar

4. Sirbu, T. (2011). The searching of active catalase producers among the microscopic fungi. An. U. O. Fasc. Biol. 2, 164–167.Search in Google Scholar

5. Choi, M.M.F. & Yiu, T.P. (2004). Immobilization of beef liver catalase on eggshell membrane for fabrication of hydrogen peroxide biosensor. Enzyme Microb. Tech. 34, 41–47. DOI: 10.1016/j.enzmictec.2003.08.005.10.1016/j.enzmictec.2003.08.005Search in Google Scholar

6. Yu, M.A., Wei, Y.M., Zhao, L., Jiang, L., Zhu, X.B. & Qi, W. (2007). Bioconversion of ethyl 4-chloro-3-oxobutanoate by permeabilized fresh brewer’s yeast cells in the presence of allyl bromide. J. Ind. Microbiol. Biot. 34, 151–156. DOI: 10.1007/s10295-006-0179-z.10.1007/s10295-006-0179-zSearch in Google Scholar

7. Malik, M., Ganguli, A. & Ghosh, M. (2012). Modeling of permeabilization process in Pseudomonas putida G7 for enhanced limonin bioconversion. Appl Microbiol. Biot. 95, 223–231. DOI: 10.1007/s00253-012-3880-z.10.1007/s00253-012-3880-zSearch in Google Scholar

8. Scherrer, R., Louden, L. & Gerhardt, P. (1974). Porosity of the yeast cell wall and membrane. J. Bacteriol. 118, 534–540.10.1128/jb.118.2.534-540.1974Search in Google Scholar

9. Zlotnik, H., Fernandez, M.P., Bowers, B. & Cabib, E. (1984). Saccharomyces cerevisiae mannoproteins form an external cell wall layer that determines wall porosity. J. Bacteriol. 159, 1018–1026.10.1128/jb.159.3.1018-1026.1984Search in Google Scholar

10. Joshi, M.S., Gowda, L.R., Katwa, L.C. & Bhat, S.G. (1989). Permeabilization of yeast cells (Kluyveromyces fragilis) to lactose by digiton. Enzyme Microb. Technol. 11, 439–443. DOI: 10.1016/0141-0229(89)90140-3.10.1016/0141-0229(89)90140-3Search in Google Scholar

11. Gowda, L.R., Bachhawat, N., & Santhoor, G.B. (1991). Permeabilization of bakers’ yeast by cetyltrimethylammonium bromide for intracellular enzyme catalysis. Enzyme Microb. Technol. 13, 154–157. DOI: 10.1016/0141-0229(91)90172-7.10.1016/0141-0229(91)90172-7Search in Google Scholar

12. Sekhar, S., Bhat, N. & Bhat, S.G. (1999). Preparation of detergent permeabilized bakers’ yeast whole cell catalase. Process Biochem. 34, 349–354. DOI: 10.1016/S00329592(98)00105-8.Search in Google Scholar

13. Vrsalovic Presecki, A., Zelic, B. & Vasic-Racki, D. (2007). Comparison of the L-malic acid production by isolated fumarase and fumarase in permeabilized baker’s yeast cells. Enzyme Microb. Technol. 41, 605–612. DOI: 10.1016/j. enzmictec.2007.05.007.Search in Google Scholar

14. Abraham, J. & Bhat, S.G. (2008). Permeabilization of baker’s yeast with N-lauroyl sarcosine. J. Ind. Microbiol. Biot. 35, 799–804. DOI: 10.1007/s10295-008-0350-9.10.1007/s10295-008-0350-918415131Search in Google Scholar

15. Kaur, G., Panesar, P.S., Bera, M.B. & Kumar, H. (2009). Hydrolysis of whey lactose using CTAB-permeabilized yeast cells. Bioproc. Biosyst. Eng. 32, 63–67. DOI: 10.1007/s00449008-0221-9.Search in Google Scholar

16. Mutanda, T., Wilhelmi, B.S. & Whiteley, C.G. (2008). Response surface methodology: Synthesis of inulooligosaccharides with an endoinulinase from Aspergillus niger. Enzyme Microb. Technol. 43, 362–368. DOI: 10.1016/j.enzmictec.2008.06.005.10.1016/j.enzmictec.2008.06.005Search in Google Scholar

17. Panesar, P.S. (2008). Application of response surface methodology in the permeabilization of yeast cells for lactose hydrolysis. Biochem. Eng. J. 39, 91–96. DOI: 10.1016/j. bej.2007.08.017.Search in Google Scholar

18. Khataee, A.R. (2009). Application of central composite design for the optimization of photodestruction of a textile dye using UV/S2O82– process. Pol. J. Chem. Technol. 11(4), 38–45. DOI:10.2478/v10026-009-0041-y.10.2478/v10026-009-0041-ySearch in Google Scholar

19. Balasubramanian, A. & Venkatesan, S. (2012). Optimization of process parameters using response surface methodology for the removal of phenol by emulsion liquid membrane. Pol. J. Chem. Technol. 14(1), 46–49. DOI: 10.2478/v10026-012-0058-5.10.2478/v10026-012-0058-5Search in Google Scholar

20. Montgomery, D.C. (2001). Design and analysis of experiments. New York, NY, USA: Wiley.Search in Google Scholar

21. Delrio, L.A., Gomezortega, M., Leallopez, A. & Lopezgorge, J. (1977). More sensitive modification of catalase assay with clark oxygen-electrode-application to kinetic study of pea leaf enzyme. Anal. Biochem. 80, 409–15. DOI: 10.1016/00032697(77)90662-5.Search in Google Scholar

22. Olczak, I., Grubecki, I. & Wójcik, M. (2010). Optimization of permeabilization process of Saccharomyces cerevisiae yeast by methanol. Inż. Ap. Chem. 49(2), 89–90.Search in Google Scholar

23. Akhnazarova, S. & Kafarov, V. (1982). Experiment optimization in chemistry and chemical engineering. Moscow, Russia: Mir Publications.Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering