Cite

1. Jani, A.M.M., Losic, D. & Voelcker, N.H. (2013). Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Prog. Mater. Sci. 58, 636-704. DOI: 10.1016/j.pmatsci.2013.01.002.10.1016/j.pmatsci.2013.01.002Search in Google Scholar

2. Zaraska, L., Sulka, G.D. & Jaskuła, M. (2012). Fabrication of free-standing copper foils covered with highly-ordered copper nanowires arrays. Appl. Surf. Sci. 258, 7781-7785. DOI: 10.1016/j.apsusc.2012.04.148.10.1016/j.apsusc.2012.04.148Search in Google Scholar

3. Zaraska, L., Kurowska, E., Sulka, G.D. & Jaskuła, M. (2012). Template-assisted fabrication of tin and antimony based nanowire arrays. Appl. Surf. Sci. 258, 9718-9722. DOI: 10.1016/j. apsusc.2012.06.018.Search in Google Scholar

4. Feizi, E., Scott, K., Baxendale, M., Pal, C., Ray, A.K., Wang, W., Pang, Y. & Hodgson, S.N.B. (2012). Synthesis and characterisation of nickel nanorods for cold cathode fl uorescent lamps. Mat. Chem. Phys. 135, 832-836. DOI: 10.1016/j. matchemphys.2012.05.066.Search in Google Scholar

5. Montero-Moreno, J.M., Belenguer, M., Sarret, M. & Műller, C.M. (2009). Production of alumina templates suitable for electrodeposition of nanostructures using stepped techniques. Electrochim. Acta 54, 2529-2535. DOI: 10.1016/j. electacta.2008.03.067.Search in Google Scholar

6. Liu, P., Singh, V.P., Jarro, C.A. & Rajaputra, S. (2011). Cadmium sulfi de nanowires for the window semiconductor layer in thin fi lm CdS-CdTe solar cells. Nanotechnology 22, 145304. DOI: 10.1088/0957-4484/22/14/145304.10.1088/0957-4484/22/14/14530421346300Search in Google Scholar

7. Márquez, F., Morant, C., López, V., Zamora, F., Campo, T. & Elizalde, E. (2011). An alternative route for the synthesis of silicon nanowires via porous anodic alumina masks. Nanoscale Res. Lett. 6, 495. DOI: 10.1186/1556-276X-6-495.10.1186/1556-276X-6-495321201021849077Search in Google Scholar

8. Gomez, H., Riveros, G., Ramirez, D., Henriquez, R., Schrebler, R., Marotti, R. & Dalchiele, E. (2012). Growth and characterization of ZnO nanowire arrays electrodeposited into anodic alumina templates in DMSO solution. J. Solid State Electrochem. 16, 197-204. DOI: 10.1007/s10008-011-1309-8.10.1007/s10008-011-1309-8Search in Google Scholar

9. Kokonou, M., Ioannou, G., Rebholz, C. & Doumanidis, C.C. (2013). Polymeric nanowires and nanopillars fabricated by template wetting. J. Nanopart. Res. 15, 1552. DOI: 10.1007/ s11051-013-1552-2.Search in Google Scholar

10. Lee, D.Y., Lee, D.H., Lee, S.G. & Cho, K. (2012). Hierarchical gecko-inspired nanohairs with a high aspect ratio induced by nanoyielding. Soft Mater. 8, 4905-4910. DOI: 10.1039/C2SM07319F.10.1039/c2sm07319fSearch in Google Scholar

11. Yu, Y., Kant, K., Shapter, J.G., Addai-Mensah, J., Losic, D. (2012). Gold nanotube membranes have catalytic properties. Micropor. Mesopor. Mater. 153, 131-136. DOI: 10.1016/j. micromeso.2011.12.011.Search in Google Scholar

12. Xu, X., Huang, J., Shao, M. & Wang, P. (2012). Synthetic control of large-area, ordered Fe nanotubes and their nanotube-core/ alumina-sheath nanocables. Mat. Chem. Phys. 135, 6-9. DOI: 10.1016/j.matchemphys.2012.04.045.10.1016/j.matchemphys.2012.04.045Search in Google Scholar

13. Bocchetta, P., Santamaria, M. & Di Quarto, F. (2013). One-step electrochemical synthesis and physicochemical characterization of CdSe nanotubes. Electrochim. Acta 88, 340-346. DOI: http://dx.doi.org/10.1016/j.electacta.2012.09.112.10.1016/j.electacta.2012.09.112Search in Google Scholar

14. Pitzschel, K., Bachmann, J., Montero-Moreno, J.M., Escrig, J., Görlitz, D. & Nielsch, K. (2012). Reversal modes and magnetostatic interactions in Fe3O4/ZrO2/Fe3O4 multilayer nanotubes. Nanotechnology 23, 495718. DOI: 10.1088/0957-4484/23/49/495718.10.1088/0957-4484/23/49/49571823164751Search in Google Scholar

15. Sarno, M., Tamburrano, A., Arurault, L., Fontorbes, S., Pantani, R., Datas, L., Ciambelli, P. & Sarto, M.S. (2013). Electrical conductivity of carbon nanotubes grown inside a mesoporous anodic aluminum oxide membrane. Carbon 55, 10-22. DOI: 10.1016/j.carbon.2012.10.063.10.1016/j.carbon.2012.10.063Search in Google Scholar

16. Li, X., Lim, Y.F., Yao, K., Tay, F.E.H. & Seah, K.H. (2013). Ferroelectric Poly(vinylidene fl uoride) Homopolymer Nanotubes Derived from Solution in Anodic Alumina Membrane Template. Chem. Mater. 25, 524-529. DOI: 10.1021/ cm3028466.10.1021/cm3028466Search in Google Scholar

17. Xu, X., Huang, J., Shao, M. & Wang, P. (2012). Synthetic control of large-area, ordered Fe nanotubes and their nanotube-core/ alumina-sheath nanocables. Mat. Chem. Phys. 135, 6-9. DOI: 10.1016/j.matchemphys.2012.04.045.10.1016/j.matchemphys.2012.04.045Search in Google Scholar

18. Norek, M., Stępniowski, W.J., Zasada, D., Karczewski, K., Bystrzycki, J. & Bojar, Z. (2012). H2 absorption at ambient conditions by anodized aluminum oxide (AAO) pattern-transferred Pd nanotubes occluded by Mg nanoparticles. Mat. Chem. Phys. 133, 376-382. DOI: 10.1016/j.matchemphys.2012.01.043.10.1016/j.matchemphys.2012.01.043Search in Google Scholar

19. Yu, D., Feng, Y., Zhu, Y., Zhang, X., Li, B., Liu, H. (2011). Template synthesis and characterization of molybdenum disulfi de nanotubules. Mat. Res. Bull. 46, 1504-1509. DOI: 10.1016/j.materresbull.2011.04.018.10.1016/j.materresbull.2011.04.018Search in Google Scholar

20. Valeev, R., Romanov, E., Beltukov, A., Mukhgalin, V., Roslyakov, I. & Eliseev, A. (2012). Structure and luminescence characteristics of ZnS nanodot array in porous anodic aluminum oxide. Phys. Status Sol. C 9, 1462-1465. DOI: 10.1002/ pssc.201100677.10.1002/pssc.201100677Search in Google Scholar

21. Böhnert, T., Vega, V, Michel, A.K., Prida, V.M. & Nielsch, K. (2013). Magneto-thermopower and magnetoresistance of single Co-Ni alloy nanowires. Appl. Phys. Lett. 103, 092407. DOI: 10.1063/1.4819949.10.1063/1.4819949Search in Google Scholar

22. Prida, V.M., García, J., Iglesias, L., Vega, V., Görlitz, D., Nielsch, K., Barriga-Castro, E.D., Mendoza-Reséndez, R., Ponce, A. & Luna, C., (2013). Electroplating and magnetostructural characterization of multisegmented Co54Ni46/Co85Ni15 nanowires from single electrochemical bath in anodic alumina templates. Nanoscale Res. Lett. 8, 1-7. DOI: 10.1186/1556-276X-8-263.10.1186/1556-276X-8-263368004923735184Search in Google Scholar

23. Romero, V., Vega, V., García, J., Zierold, R., Nielsch, K., Prida, V.M., Hernando, B. & Benavente, J. (2013). Changes in morphology and ionic transport induced by ALD SiO2 coating of nanoporous alumina membranes. ACS Appl. Mater. Interf. 5, 3556-3564. DOI: 10.1021/am400300r.10.1021/am400300r23574388Search in Google Scholar

24. Yang, Z. & Veinot, J.G.C. (2011). Size-controlled template synthesis of metal-free germanium nanowires. J. Mater. Chem. 21, 16505-16509. DOI: 10.1039/c1jm12460a.10.1039/c1jm12460aSearch in Google Scholar

25. Das, G. , Patra, N., Gopalakrishanan, A., Proietti Zaccaria, R., Toma, A, Thorat, S., Di Fabrizio, E., Diaspro, A. & Salerno, M. (2012). Surface enhanced Raman scattering substrate based on gold-coated anodic porous alumina template. Microelectron. Eng. 97, 383-386. DOI: 10.1016/j.mee.2012.02.037.10.1016/j.mee.2012.02.037Search in Google Scholar

26. Das, G., Patra, N., Gopalakrishnan, A., Zaccaria, R.P., Toma, A., Thorat, S., Di Fabrizio, E., Diaspro, A. & Salerno, M. (2012). Fabrication of large-area ordered and reproducible nanostructures for SERS biosensor application. Analyst. 137, 1785-1792. DOI: 10.1039/c2an16022f.10.1039/c2an16022fSearch in Google Scholar

27. Kurowska, E., Brzózka, A., Jarosz, M., Sulka, G.D. & Jaskuła, M. (2013). Silver nanowire array sensor for sensitive and rapid detection of H2O2. Electrochim. Acta. 104, 439-447. DOI: 10.1016/j.electacta.2013.01.07710.1016/j.electacta.2013.01.077Search in Google Scholar

28. Sulka, G.D., Hnida, K. & Brzózka, A. (2013). pH sensors based on polypyrrole nanowire arrays. Electrochim. Acta. 104, 536-541. DOI: 10.1016/j.electacta.2012.12.064. 29. Salerno, M., Caneva-Soumetz, F., Pastorino, L., Patra, N., Diaspro, A. & Ruggiero, C. (2013). Adhesion and Proliferation of Osteoblast-Like Cells on Anodic Porous Alumina Substrates With Different Morphology. IEEE Trans. Nanobiosci. 12, 106-111. DOI: 10.1109/TNB.2013.2257835.10.1109/TNB.2013.2257835Search in Google Scholar

30. Gultepe, E., Nagesha, D., Sridhar, S. & Amiji, M. (2010). Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices. Adv. Drug. Deliv. Rev. 62, 305-315. DOI: 10.1016/j.addr.2009.11.003.10.1016/j.addr.2009.11.003Search in Google Scholar

31. Szuwarzyński, M., Zaraska, L., Zapotoczny, S. & Sulka, G.D. (2013). Pulsatile releasing platform of nanocontainers equipped with thermally responsive polymeric nanovalves. Chem. Mater. 25, 514-520. DOI: 10.1021/cm303930y.10.1021/cm303930ySearch in Google Scholar

32. Ono, S. & Masuko, N. (2003). Evaluation of pore diameter of anodic porous fi lms formed on aluminum. Surf. Coat. Technol. 169-170, 139-142. DOI: 10.1016/S0257-8972(03)00197-X.10.1016/S0257-8972(03)00197-XSearch in Google Scholar

33. Sulka, G.D., Stroobants, S., Moshchalkov, V., Borghs, G. & Celis, J.P. (2002). Synthesis of Well-Ordered Nanopores by Anodizing Aluminum Foils in Sulfuric Acid. J. Electrochem. Soc. 149, D97-D103. DOI: 10.1149/1.1481527.10.1149/1.1481527Search in Google Scholar

34. Sulka, G.D. & Stępniowski, W.J. (2009). Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures. Electrochim. Acta 54, 3683-3691. DOI: 10.1016/j.electacta.2009.01.046.10.1016/j.electacta.2009.01.046Search in Google Scholar

35. Stępniowski, W.J., Norek, M., Michalska-Domańska, M. & Bojar, Z. (2013). Ultra-small nanopores obtained by self-organized anodization of aluminum in oxalic acid at low voltages. Mater. Lett. 111, 20-23. DOI: 10.1016/j.matlet.2013.08.059.10.1016/j.matlet.2013.08.059Search in Google Scholar

36. Stępniowski, W.J., Nowak-Stępniowska, A. & Bojar, Z. (2013). Quantitative arrangement analysis of anodic alumina formed by short anodizations in oxalic acid. Mater. Character. 78, 79-86. DOI: 10.1016/j.matchar.2013.01.013.10.1016/j.matchar.2013.01.013Search in Google Scholar

37. Zaraska, L., Sulka, G.D. & Jaskuła, M. (2010). The effect of n-alcohols on porous anodic alumina formed by self-organized two-step anodizing of aluminum in phosphoric acid. Surf. Coat. Technol. 204, 1729-1737. DOI: 10.1016/j.surfcoat.2009.10.051.10.1016/j.surfcoat.2009.10.051Search in Google Scholar

38. Ono, S., Saito, M. & Asoh, H. (2005). Self-ordering of anodic porous alumina formed in organic acid electrolytes. Electrochim. Acta. 51, 827-833. DOI: 10.1016/j.electacta.2005.05.058.10.1016/j.electacta.2005.05.058Search in Google Scholar

39. Pashchanka, M. & Schneider, J.J. (2013). Experimental validation of the novel theory explaining self-organization in porous anodic alumina fi lms. Phys. Chem. Chem. Phys. 15, 7070-7074. DOI: 10.1039/c3cp50805f.10.1039/c3cp50805f23579574Search in Google Scholar

40. Kikuchi, T., Yamamoto, T. & Suzuki, R.O. (2013). Growth behavior of anodic porous alumina formed in malic acid solution. Appl. Surf. Sci. 284, 907-913. DOI: 10.1016/j. apsusc.2013.08.044.Search in Google Scholar

41. Patra, N., Salerno, M., Losso, R., Cingolani, R. (2009). Use of unconventional organic acids as anodization electrolytes for fabrication of porous alumina. 2009 9th IEEE Conference on Nanotechnology, IEEE NANO 2009, 26-30 July 2009 (pp. 567-570). Genoa, Italy. WSxM. http://www.nanotec.esSearch in Google Scholar

42. Horcas, I., Fernández, R., Gómez-Rodríguez, J.M., Colchero, J., Gómez-Herrero, J. & Baro, A.M. (2007). WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705. DOI: 10.1063/1.2432410.10.1063/1.243241017503926Search in Google Scholar

43. Sulka. G.D. & Parkoła. K.G. (2007). Temperature infl uence on well-ordered nanopore structures grown by anodization of aluminium in sulphuric acid. Electrochim. Acta. 52, 1880-1888. DOI: 10.1016/j.electacta.2006.07.053.10.1016/j.electacta.2006.07.053Search in Google Scholar

44. Zaraska. L., Stępniowski. W.J., Ciepiela. E. & Sulka. G.D. (2013). The effect of anodizing temperature on structural features and hexagonal arrangement of nanopores in alumina synthesized by two-step anodizing in oxalic acid. Thin Solid Films 534, 155-161. DOI: 10.1016/j.tsf.2013.02.056.10.1016/j.tsf.2013.02.056Search in Google Scholar

45. Pashchanka, M. & Schneider, J.J. (2011). Origin of self-organisation in porous anodic alumina fi lms derived from analogy with Rayleigh-Bénard convection cells. J. Mater. Chem. 21, 18761-18767. DOI: 10.1039/c1jm13898g.10.1039/c1jm13898gSearch in Google Scholar

46. Nielsch, K, Choi, J., Schwirn, K., Wehrspohn, R.B. & Gösele, U. (2002). Self-ordering Regimes of Porous Alumina: The 10% Porosity Rule. Nano Lett. 2, 677-680. DOI: 10.1021/ nl025537k. 10.1021/nl025537kSearch in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering