Open Access

Lifetime of a soluble solid particle in a stagnant medium: approximate analytical modelling involving fractional (half-time) derivatives

   | Sep 20, 2013

Cite

1. Noyes, A. & Whitney, W.R. (1987). The Rate of Solution of Solid Substances in their own Solutions, J. Am. Chem. Soc. 19 (12), 930-934.Search in Google Scholar

2. Higuchi,W.I. & Hiestand, E.N. (1963). Dissolution rates of finely divided powders I. Effect of a distribution of particle sizes in a diffusion-controlled process. J. Pharm. Sci., 52 (1), 67-71. DOI: 10.1002/jps.2600520114.10.1002/jps.2600520114Search in Google Scholar

3. Siepmann, J. & Siepmann, F. (2011). Mathematical modeling of drug release from lipid dosage formsInt. J. Pharmaceutics, 418 (1), 42-53. DOI: 10.1016/j.ijpharm.2011.07.015.10.1016/j.ijpharm.2011.07.015Search in Google Scholar

4. Haverkamp, R.G. & Welch, B.J. (1998). Modelling the dissolution of alumina powder in cryolite, Chem. Eng. Proc. 37 (2), 177-187. http://dx.doi.org/10.1016/S0255-2701(97)00048-210.1016/S0255-2701(97)00048-2Search in Google Scholar

5. Dorozhkin, S.V. (1996). Fundamentals of the wet-process phosphoric acid production.1. Kinetics and mechanism of the phosphate rock dissolution, Ind. Eng. Chem. Res. 35 (11), 4328-4335. DOI: 10.1021/ie960092u.10.1021/ie960092uSearch in Google Scholar

6. Bechtloff, N., Justen, P. & Ulrich, J.(2001). The kinetics of heterogeneous solid-liquid reaction crystallizations-an overview and examples, Chem. Ing. Tech. 73 (5), 453-460. DOI: 10.1002/1522-2640(200105)73:5.Search in Google Scholar

7. Forryan, C.L., Klymenko, O.V., Wilkins, S.J., Brennan, C.M. & Compton, R.G. (2005). Experimental and Theoretical Study of the Surface-Controlled Dissolution of Cylindrical Particles. Application to Solubilization of Potassium Hydrogen Carbonate in Hot Dimethylformamide, J. Phys. Chem. B, 109 (44), 20786-20793. DOI:10.1021/jp058197a.10.1021/jp058197aSearch in Google Scholar

8. Lu, T.K., Frisella, M.E. & Johnson, K.C. (1993). Dissolution modeling: Factors affecting the dissolution rates of polydisperse powders, Pharm Res 10 (9), 1308-1314. DOI: 10.1023/A:1018917729477.10.1023/A:1018917729477Search in Google Scholar

9. Liu, B.T. & Hsu, J.P. (2006). Theoretical analysis on diffusional release from ellipsoidal drug delivery devices, Chem. Eng. Sci., 61 (6) 1748-1752. http://dx.doi.org/10.1016/j.ces.2005.10.01410.1016/j.ces.2005.10.014Search in Google Scholar

10. Sertsou, G. (2004). Analytical Derivation of Time Required for Dissolution of Monodisperse Drug Particles, J. Pharm. Sci., 93 (8), 1941-1943. DOI: 10.1002/jps.20119.10.1002/jps.20119Search in Google Scholar

11. Costa, P. & Lobo, J.M.S. (2001). Review: modeling and comparison of dissolution profiles, Europ. J. Pharmac. Sci. 13 (2), 123-133. DOI: 10.1016/S0928-0987(01)00095-1.10.1016/S0928-0987(01)00095-1Search in Google Scholar

12. Allers, T., Luckas, M. & Schmidt, K.G. (2003). Modeling and measurement of the dissolution rate of solid particles in aqueous suspensions. Part I. Modeling, Chem. Eng. Technol. 26 (11), 1131-1136. DOI: 10.1002/ceat.200303007.10.1002/ceat.200303007Search in Google Scholar

13. Marabi, A., Mayor, G., Burbidge, A., Wallach, R. & Saguy, I.S. (2008). Assessing dissolution kinetics of powders by a single particle approach, Chem. Eng. J. 139 (1), 118-127. DOI: 10.1016/j.cej.2007.07.081.10.1016/j.cej.2007.07.081Search in Google Scholar

14. Rakoczy, R. & Masiuk, S. (2011). Studies of a mixing process induced by a transverse rotating magnetic field , ChemicalEngineering Science, 66 (11), 2298-2308. DOI: 10.1016/j. ces.2011.02.021.Search in Google Scholar

15. Rakoczy, R. (2013). Mixing energy investigations in a liquid vessel that is mixed by using a rotating magnetic field, Chemical Engineering and Processing: Process Intensification, 66, April, 1-11. DOI: 10.1016/j.bbr.2011.03.031.012.Search in Google Scholar

16. Crank, J. (1975). The Mathematics of Diffusion. 2nd ed., Oxford University Press, London.Search in Google Scholar

17. van Keer, R. & Kacur, J. (1998). On a numerical model for diffusion-controlled growth and dissolution of spherical precipitates, Mathematical Problems in Engineering, 4 (2), 115-133. ISSN: 1024123X.Search in Google Scholar

18. Vermolen, F.J., van Mourik, P. & van der Zwaag, S. (1997). Analytical approach to particle dissolution in a finite medium, Mater. Sci. Technol. 13 (4), 308-312. ISSN: 02670836.Search in Google Scholar

19. Vrentas, J.S. & Shin, D. (1980). Perturbation solutions of spherical moving boundary problems. II, Chem. Eng. Sci. 35 (8), 1697-1705. DOI: 10.1016/0009-2509(80)85004-4.10.1016/0009-2509(80)85004-4Search in Google Scholar

20. Vrentas, J.S. & Shin, D. (1980). Perturbation solutions of spherical moving boundary problems. I, Chem. Eng. Sci. 35 (8) 1687-1696. DOI: 10.1016/0009-2509(80)85003-2.10.1016/0009-2509(80)85003-2Search in Google Scholar

21. Asthana, R. & Pabi, S.K. (1990). An Approximate Solution for the Finite-extent Moving-boundary Diffusion-controlled Dissolution of Spheres, Materials Science and Engineering, A128 (2), 253-258. DOI: 10.1016/0921-5093(90)90233-S.10.1016/0921-5093(90)90233-SSearch in Google Scholar

22. Kupiec, K. & Gwadera, M. (2012). On the application of an approximate kinetic equation of heat and mass transfer processes: the effect of body shape, Heat Mass Transfer, 48 (4), 599 -610. DOI: 10.1007/s00231-011-0905-6.10.1007/s00231-011-0905-6Search in Google Scholar

23. Rosner, D.E. (1969). Lifetime of a Highly Soluble Dense Spherical Particle1, The Journal of Physical Chemistry, 73 (2), 382-387. DOI: 10.1021/j100722a019.10.1021/j100722a019Search in Google Scholar

24. Rice, R.G. & Do, D.D. (2006). Dissolution of a solid sphere in an unbounded, stagnant liquid, Chem. Eng. Sci., 61 (2), 775-778. DOI: 10.1016/j.bbr.2011.03.031.10.1016/j.bbr.2011.03.03121435355Search in Google Scholar

25. Oldham, K.B. & Spanier, J. (1974). The Fractional calculus, New York, USA, Academic Press.Search in Google Scholar

26. dos Santos, M.C., Lenzi, E., Gomes, E.M., Lenzi, M.K. & Lenzi, E.K. (2011). Development of Heavy Metal sorption Isotherm Using Fractional Calculus, Int. Rev. Chem. Eng., 3 (6), 814-817.Search in Google Scholar

27. Pfaffenzeller, R.A., Lenzi, M.K. & Lenzi, E.K. (2011). Modeling of Granular Material Mixing Using Fractional Calculus, Int. Rev. Chem. Eng., 3 (6), 818-821.Search in Google Scholar

28. Hristov, J. (2012). Impedance at the Interface of Contacting Bodies: 1-D example solved by semi-derivatives, ThermalScience, 16, 623-627. DOI: 10.2298/TSCI111125017H.10.2298/TSCI111125017HSearch in Google Scholar

29. Carslaw, H.S. & Jaeger, J.C. (1959). Conduction of Heatin Solids, London, UK, Oxford University Press. Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering