Open Access

Effect of two-stage thermal disintegration on particle size distribution in sewage sludge


Cite

1. Appels, L., Baeyens, J., Degreve, J. & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste- -activated sludge. Progress in Energy and Combustion Science, 34 (6), 755-781. DOI: 10.1016/j.pecs.2008.06.002.10.1016/j.pecs.2008.06.002Search in Google Scholar

3. Friedrich, E., Friedrich, H., Heinze, W., Jobst, K., Richter, H.J. & Hermel, W. (1993). Progress in characterization of sludge particles. Wat. Sci. Tech., 28 (I), 14S-148. 0273-1223193.10.2166/wst.1993.0035Search in Google Scholar

4. Olböter, L. & Vogelpohl, A. (1993). Influence of particle size distribution on the dewatering of organic sludges. Wat. Sci. Tech. 28 (1), 149-157. 0273-1223193.10.2166/wst.1993.0037Search in Google Scholar

5. Neis, U. & Tiehm, A. (1997). Particle size analysis in primary and secondary waste water effluents. Wat. Sci. Tech. 36 (4), 151-158.10.2166/wst.1997.0108Search in Google Scholar

6. Tiehm, A., Herwig, V. & Neis, U. (1999). Particle size analysis for improved sedimentation and filtration in waste water treatment. Wat. Sci. Tech. 39 (8), 99-106.10.2166/wst.1999.0395Search in Google Scholar

7. Barth, H.G. & Flippen, R.B. (1995). Particle Size Analysis. Anal. Chem, 67(12), 257-272. Publication Date: June 1995. DOI: 10.1021/ac00108a013.10.1021/ac00108a013Search in Google Scholar

8. Biggs, C.A. & Lant, P.A. (2000). Activated sludge flocculation: on-line determination of floc size and the effect of shear. Wat. Res. 34 (9), 2542-2550.10.1016/S0043-1354(99)00431-5Search in Google Scholar

9. Blume, T. & Neis, U. (2004). Improved wastewater disinfection by ultrasonic pre-treatment. Ultrasonics Sonochemistry, 11 (5), 333-336. Available online August 2003. DOI: 10.1016/ S1350-4177(03)00156-1.Search in Google Scholar

10. Chaignon, V., Lartiges, B.S., El Samrani, A. & Mustin, C. (2002). Evolution of size distribution and transfer of mineral particles between flocs in activated sludges: an insight into floc exchange dynamics. Wat. Res. 36 (3), 676-84.10.1016/S0043-1354(01)00266-4Search in Google Scholar

11. Houghton, J.I., Burgess, J.E. & Stephenson, T. (2002). Off-line particle size analysis of digested sludge. Wat. Res., 36 (18), 4643-7.10.1016/S0043-1354(02)00157-4Search in Google Scholar

12. Jung, Y., Ko, H., Jung, B. & Sung, N. (2011). Application of Ultrasonic System for Enhanced Sewage Sludge Disintegration: A Comparative Study of Single- and Dual- Frequency, KSCE Journal of Civil Engineering, 15 (5), 793-797. DOI: 10.1007/s12205-011-0832-6.10.1007/s12205-011-0832-6Search in Google Scholar

13. Tiehm, A., Nickel, K., Zellhorn, M. & Neis, U. (2001). Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Wat. Res., 35 (8), 2003-9. Web: www. elsevier.com/locate/watres.10.1016/S0043-1354(00)00468-1Search in Google Scholar

14. Huan, L., Yiying, J., Mahar, R.B., Zhiyu, W. & Yongfeng, N. (2009). Effects of ultrasonic disintegration on sludge microbial activity and dewaterability. Journal of Hazardous Materials, 161 (2-3), 1421-6. DOI: 10.1016/j.jhazmat.2008.04.113.10.1016/j.jhazmat.2008.04.11318547717Search in Google Scholar

15. DeLaune, R.D. & Reddy, K.R. (2005). Redox potential. Encyclopedia of Soils in the Environment, 366-371. Web: http:// www.sciencedirect.com/science/article/pii/B0123485304002125.Search in Google Scholar

16. Wu, J. & He, C. (2010). Experimental and modeling investigation of sewage solids sedimentation based on particle size distribution and fractal dimension. Int. J. Environ. Sci. Tech. 7 (1), 37-46. 10.1007/BF03326115Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering