Cite

1. Kang, K. et al. (2006). Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries. Science 311, 977-980. DOI: 10.1126/science.1122152.10.1126/science.1122152Search in Google Scholar

2. Aricò, A.S. et al. (2005). Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366-377. DOI: 10.1038/nmat1368.10.1038/nmat1368Search in Google Scholar

3. Jiang, Ch., Hosono, E. & Zhou, H. (2006). Nanomaterials for lithium ion batteries. Nano Today 1, 28-33. DOI: 10.1016/ S1748-0132(06)70114-1.10.1016/S1748-0132(06)70114-1Search in Google Scholar

4. Jiang, Ch. et al. (2007). Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode. ElectrochimicaActa 52, 6470-6475. DOI: 10.1016/j.electacta.2007.04.070.10.1016/j.electacta.2007.04.070Search in Google Scholar

5. Tarascon, J.M. & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature 414, 359-367. DOI: 10.1038/35104644.10.1038/35104644Search in Google Scholar

6. Kovacheva, D. et al. (2002). Synthesizing nanocrystalline LiMn2O4 by a combustion route. J. Mater. Chem. 12, 1184-1188. DOI: 10.1039/b107669h.10.1039/b107669hSearch in Google Scholar

7. Thackeray, M.M. (1997). Manganese oxides for lithium batteries. Prog. Solid State Chem. 25, 1-71. DOI: 10.1016/ S0079-6786(97)81003-5.10.1016/S0079-6786(97)81003-5Search in Google Scholar

8. Liu, W., Kowal, K. & Farrington, G.C. (1998). Mechanism of the Electrochemical Insertion of Lithium into LiMn2O4 Spinels. J. Electrochem. Soc. 145, 459-465. DOI: 10.1149/1.1838285.10.1149/1.1838285Search in Google Scholar

9. Lee, Y.S. et al. (1998). Synthesis of spinel LiMn2O4 cathode material prepared by an adipic acid-assisted sol-gel method for lithium secondary batteries. Solid State Ionics 109, 285-294. DOI: 10.1016/S0167-2738(98)00085-X.10.1016/S0167-2738(98)00085-XSearch in Google Scholar

10. Park, H.S. et al. (2001). Relationship between Chemical Bonding Character and Electrochemical Performance in Nickel-Substituted Lithium Manganese Oxides. J. Phys. Chem. B 105, 4860-4866. DOI: 10.1021/jp010079+.10.1021/jp010079+Search in Google Scholar

11. Michalska, M. et al. (2011). Nanocrystalline lithium-manganese oxide spinels for Li-ion batteries - Sol-gel synthesis and characterization of their structure and selected physical properties. Solid State Ionics 188, 160-164, DOI: 10.1016/j. ssi.2010.12.003.Search in Google Scholar

12. Curtis, C.J., Wang, J.X. & Schulz, D.L. (2004). Preparation and Characterization of LiMn2O4 Spinel Nanoparticles as Cathode Materials in Secondary Li Batteries. J. Electrochem. Soc. 151, A590-A598. DOI: 10.1149/1.1648021.10.1149/1.1648021Search in Google Scholar

13. Cabana, J. et al. (2007). Enhanced high rate performance of LiMn2O4 spinel nanoparticles synthesized by a hard-template route. J. Power Sources 166, 492-498. DOI: 10.1016/j. jpowsour.2006.12.107.Search in Google Scholar

14. Jiang, C.H. et al. (2007). Synthesis of spinel LiMn2O4 nanoparticles through one-step hydrothermal reaction. J. PowerSources 172, 410-415. DOI: 10.1016/j.jpowsour.2007.07.039.10.1016/j.jpowsour.2007.07.039Search in Google Scholar

15. Bak S.M. et al. (2011). Spinel LiMn2O4/reduced graphene oxide hybrid for high rate lithium ion batteries. J. Mater. Chem. 21, 17309-17315. DOI: 10.1039/C1JM13741G.10.1039/c1jm13741gSearch in Google Scholar

16. Wan Ch., Nuli Y., Zhuang J., Jiang Z. (2002). Synthesis of spinel LiMn2O4 using direct solid state reaction. MaterialsLetters 56, 357-363. DOI: 10.1016/S0167-577X(02)00485-8.10.1016/S0167-577X(02)00485-8Search in Google Scholar

17. Zhang, X. et al. (2011). Electrochemical performance of spinel LiMn2O4 cathode materials made by flame-assisted spray technology. J. Power Sources 196, 3640-3645. DOI: 10.1016/j. jpowsour.2010.07.008.Search in Google Scholar

18. Luo, J. et al. (2007). LiMn2O4 hollow nanosphere electrode material with excellent cycling reversibility and rate capability. Electrochem. Commun. 9, 1404-1409. DOI: 10.1016/j.elecom.2007.01.058.10.1016/j.elecom.2007.01.058Search in Google Scholar

19. Liu, X.M. et al. (2010). Sol-gel synthesis of multiwalled carbon nanotube-LiMn2O4 nanocomposites as cathode materials for Li-ion batteries. J. Power Sources 195, 4290-4296. DOI: 10.1016/j.jpowsour.2010.01.068.10.1016/j.jpowsour.2010.01.068Search in Google Scholar

20. Kim, F. et al. (2010). Self-Propagating Domino-like Reactions in Oxidized Graphite. Adv. Funct. Mater. 20, 2867-2873. DOI: 10.1002/adfm.201000736.10.1002/adfm.201000736Search in Google Scholar

21. Hummers, W.S. & Offeman, R.E. (1958). Preparation of Graphitic Oxide. J. Am. Chem. Soc. 80, 1339. DOI: 10.1021/ja01539a017.10.1021/ja01539a017Search in Google Scholar

22. Julien, C.M., Massot, M. (2003). Lattice vibrations of materials for lithium rechargeable batteries I. Lithium manganese oxide spinel. Materials Science and Engineering B 97, 217-230. DOI: 10.1016/S0921-5107(02)00582-2.10.1016/S0921-5107(02)00582-2Search in Google Scholar

23. Eda, G. & Chhowalla, M. (2010). Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics. Adv. Mater. 22, 2392-2415. DOI: 10.1002/ adma.200903689.10.1002/adma.20090368920432408Search in Google Scholar

24. Kiani, M.A., Mousavi, M.F. & Rahmanifar, M.S. (2011). Synthesis of Nano- and Micro-Particles of LiMn2O4: Electrochemical Investigation and Assessment as a Cathode in Li Battery. Int. J. Electrochem. Sci. 6, 2581-2595.Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering