Open Access

Development of a Simulation Model for Controlling and Improving the Productivity of Batch Reactors


Cite

1. Dirion, J.L., Cabassud, M., Casamatta, G. & Le Lann, M.V. (2002). Neural Networks for Process Control:Application to the Temperature Control of Batch ChemicalReactors. Vol. 2, (pp 444-450). Expert System, by Academic Press.Search in Google Scholar

2. Baudoin, O., Baudet, P., Dechelotte, S. & Hameury, G. (2004). Using the software Batch Reactor for a safetystudy in the context of exothermic reactions (June 28). Prosim S.A: Press release.Search in Google Scholar

3. Bouhenchir, H., Cabassud, M., Le Lann, M.V. & Casamatta G. (2001). A general simulation model and a heating/cooling strategy to improve controllability of batch reactors. Trans IchemE. 79, Part A, 641-646. DOI: 10.1205/026387601316971217.10.1205/026387601316971217Search in Google Scholar

4. Josep, A., Felliu, Iban Grau, Miquel A. Alos, Jose, J. & Macias-Hernandez (2003). Match Your ProcessConstraints Using Dynamic Simulation. December, (pp. 42-43). Information Technology C.E.P.Search in Google Scholar

5. Uhlemann, J., Cabassud, M. & Le Lann M.V. (1994). Semi-Batch reactor optimization and control for the epoxidation of furfural. Chem. Eng. Sci. 49 (18), 3169-3191. DOI: 10.1016/0009-2509(94)E0088-8.10.1016/0009-2509(94)E0088-8Search in Google Scholar

6. Georgiadis, M.C., Rotstein, G.E. & Macchietto, S. (1998). Modeling and simulation of Shell and Tube Heat Exchangers under Milk Fouling. AICHE J. 44 (4), 959-971. DOI: 10.1002/aic.690440422.10.1002/aic.690440422Search in Google Scholar

7. Bahaidarah, H.M.S., Anand, N.K. & Chen, H.C. (2005). Numerical Study of Heat and Momentum Transfer in Channels with Wavy Walls. NumericalHeat Transfer, Part A, 47 (5), 417-439. DOI: 10.1080/10407780590891218.10.1080/10407780590891218Search in Google Scholar

8. Bahaidarah, H.M.S., Ijaz, M. & Anand, N.K. (2006). Numerical Study of Fluid Flow and Heat Transfer over a Series of In-line Non-circular Tubes confined in a Parallel Plate Channel. Numerical Heat Transfer, Part B, 50, 97-119. DOI: 10.1080/10407790600599041.10.1080/10407790600599041Search in Google Scholar

9. Hindmarsh, A.C. (1980). LSODE and LSODI, Two new initial value ordinary differential equation solvers. ACM Signum Newsletter, 15 (4), 10-11. DOI > 10. 1145/1218052.1218054.10.1145/1218052.1218054Search in Google Scholar

10. Gear, C.W. & Osterby, O. (1984). Solving ordinary differential equations with discontinuities. ACM Transactionon Mathematical Software, 10 (1), 23-44. DOI > 10. 1145/356068.356071.10.1145/356068.356071Search in Google Scholar

11. Bouhenchir, H. (2000). Implementation of predictivecontrol for conducting heat from a batch reactor equippedwith a mono-fluid. PhD Thesis, ENSIGC Toulouse, France.Search in Google Scholar

12. Bouhenchir, H., Cabassud, M., Le Lann, M.V. & Casamatta G. (2000). A heating-cooling management to improve controllability of batch reactor equipped with a mono-fluid heating-cooling system. European Symposium on Computer Aided Process Engineering (ESCAPE-10), 7-10 May, 2000, Florence-Italy, Computer--Aided Chemical Engineering, 8, 601-606. DOI: 10.1016/ S1570-7946(00)80102-9.10.1016/S1570-7946(00)80102-9Search in Google Scholar

13. Bouhenchir, H. (2005). Team fine chemical processes. Laboratory of Chemical Engineering at ENSIACET of Toulouse.Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering