Open Access

Modification of Polyacrylamide–β–Zeolite Composite by Phytic Acid for the Removal of Lead from Aqueous Solutions


Cite

1. Ulusoy, U. & Şimşek, S. (2005). Lead removal by polyacrylamide- bentonite and zeolite composites: Effect of phytic acid immobilization. J. Hazard. Mater. 127, 163-171. DOI: 10.1016/j.jhazmat.2005.06.036.10.1016/j.jhazmat.2005.06.036Search in Google Scholar

2. Afridi, H.I. & Kazi, T.G. & Jamali, M.K. & Kazi, G.H. & Arain, M.B. & Jalbani, N. & shar, G.Q. (2006). Analysis of Heavy Metals in Scalp Hair Samples of Hypertensive Patients by Conventional and Microwave Digestion Methods. Spectrosc. Lett. 39, 203-214. DOI: 10.1080/00387010500531266.10.1080/00387010500531266Search in Google Scholar

3. Zhu, X. & Cui, Y. & Chang, X. Zou, X. & Li, Z. (2009). Selective solid-phase extraction of le ad(II) fro m biological and natural wate r samples using surface-grafted lead(II)- imprinted polymers. Microchim. Acta 164, 125-132. DOI: 10.1007/ s00604-008-0045-y.10.1007/s00604-008-0045-ySearch in Google Scholar

4. Simsek, S. & Ulusoy, U. & Ceyhan, O. (2003). Adsorption of UO22+, T1+, Pb2+, Ra2+ and Ac3+ onto polyacrylamide-bentonite composite. J. Radioanal. Nucl. Chem. 256(2), 315-321. DOI: 10.1023/A:1023953805247.10.1023/A:1023953805247Search in Google Scholar

5. Mistry, S.R. & Joshi, R.S. & Maheria, K.C. (2011). Zeolite H-BEA catalysed multicomponent reaction: One-pot synthesis of amidoalkyl naphthols - Biologically active drug-like molecules. J. Chem. Sci. 123(4), 427-432.10.1007/s12039-011-0095-2Search in Google Scholar

6. Cheetham, A.K. & Nowak, A.K. & Betteridge, P.W. (1986). Applications of molecular graphics to zeolite catalysts. J. Chem. Sci. 96(6), 411-418. DOI: 10.1007/BF02936295.10.1007/BF02936295Search in Google Scholar

7. Xia, Q.H. & Shen, S.C. & Song, J. & Kawi, S. & Hidajat, K. (2003) Structure, morphology, and catalytic activity of β zeolite synthesized in a fluoride medium for asymmetric hydrogenation. J. Catal. 219, 74-84. DOI: 10.1016/S0021-9517(03)00154-4.10.1016/S0021-9517(03)00154-4Search in Google Scholar

8. Ulusoy, U. & Akkaya, R. (2009). Adsorptive features of polyacrylamide-apatite composite for Pb2+, UO22+ and Th4+. J. Hazard. Mater. 163, 98-108. DOI: 10.1016/j.jhazmat.2008.06.064.10.1016/j.jhazmat.2008.06.064Search in Google Scholar

9. Ulusoy, U. & Simsek, S. & Ceyhan, O. (2003). Investigations for Modification of polyacrylamide-Bentoniteby Phytic Acid and its Usability in Fe3+, Zn2+ and UO22+ Adsorption. Adsorption. 9, 165-175. DOI: 10.1023/A:1024297411400.10.1023/A:1024297411400Search in Google Scholar

10. Anirudhan, T.S. & Suchithra, P. (2009). Adsorption characteristics of humic acid-immobilized amine modified polyacrylamide/bentonite composite for cationic dyes in aqueous solutions S. J. Environ. Sci. 21, 884-891. DOI: 10.1016/ S1001-0742(08)62358-X.10.1016/S1001-0742(08)62358-XSearch in Google Scholar

11. Crea, F. & De Stefano, C. & Milea, D. & Sammartano S. (2008). Formation and stability of phytate complexes in solution. Coord. Chem. Rev. 252, 1108-1120. DOI: 10.1016/j. ccr.2007.09.008.Search in Google Scholar

12. Simsek, S. & Ulusoy, U. (2004) UO22+, T1+, Pb2+, Ra2+, Bi3+ and Ac3+ adsorption onto polyacrylamide.zeolite composite and its modified composition by phytic acid. J. Radioanal. Nucl. Chem. 261(1), 79-86. DOI: 10.1023/B:JR NC.0000030938.98515.82.Search in Google Scholar

13. Kalavathy, M.H. & Karthikeyan, T. & Rajgopal, S. & Miranda, L.R. (2005). Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust J. Colloid Interface Sci. 292, 354-362. DOI: 10.1016/j.jcis.2005.05.087.10.1016/j.jcis.2005.05.087Search in Google Scholar

14. Ulusoy, U. & Akkaya, R. (2008). Adsorptive features of chitosan entrapped in polyacrylamide hydrogel for Pb2+, UO22+, and Th4+. J. Hazard. Mater. 151, 380-388. DOI: 10.1016/j.jhazmat.2007.05.084.10.1016/j.jhazmat.2007.05.084Search in Google Scholar

15. Kabbashi, N. & Atieh, M. & Al-Mamun, A. & Mirghami, M. & Alam, M. & Yahya, N. (2009). Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution. J. Environ. Sci. 21, 539-544. DOI: 10.1016/ s1001-0742(08)62305-0.10.1016/S1001-0742(08)62305-0Search in Google Scholar

16. Hameed, B.H. & Sa lman, J.M. & Ahmad, A.L. (2009). Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones. J. Hazard. Mater. 163, 121-126. DOI: 10.1016/j.jhazmat.2008.06.069.10.1016/j.jhazmat.2008.06.06918667269Search in Google Scholar

17. El-Halwany, M.M. (2010). Study of adsorption isotherms and kinetic models for Methylene Blue adsorption on activated carbon developed from Egyptian rice hull (Part II). Desalination 250, 208-213. DOI: 10.1016/j.desal.2008.07.030.10.1016/j.desal.2008.07.030Search in Google Scholar

18. Ahmaruzzaman, M. & Laxmi Gayatri, S. (2010). Batch adsorption of 4-nitrophenol by acid activated jute stick char: Equilibrium, kinetic and thermodynamic studies. J. Chem. Eng. 158, 173-180. DOI: 10.1016/j.cej.2009.12.027.10.1016/j.cej.2009.12.027Search in Google Scholar

19. Ulusoy, U. & Senol, Z.M. (2010). Thallium adsorption onto polyacryamide-aluminosilicate composites: A Tl isotope tracer study. J. Chem. Eng. 162, 97-105. DOI: 10.1016/j. cej.2010.05.005.Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering