Open Access

The morphological response of the heart and spleen following acute myocardial infarction-induced sterile inflammation: a clinicopathological study


Cite

1. Vos T, Allen C, Arora M, Barber RM, Bhutta ZA, Brown A, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2015; 388 (10053): 1545–1602. doi: 10.1016/S0140-6736(16)31678-610.1016/S0140-6736(16)31678-6Search in Google Scholar

2. Bordejevic DA, Florina C, Mornos C, Olariu I, Petrescu L, Tomescu MC, Citu I, Mavrea A, Pescariu S. Prognostic impact of blood pressure and heart rate at admission on in-hospital mortality after primary percutaneous intervention for acute myocardial infarction with ST-segment elevation in western Romania. Ther Clin Risk Manag. 2017; 13: 1061–1068. doi: 10.2147/TCRM.S14131210.2147/TCRM.S141312557468128883734Search in Google Scholar

3. Becker D., Merkely, B. [Current therapy of the acute coronary syndrome – 2016]. Orv. Hetil. 2016; 157(38), 1500–1506.Search in Google Scholar

4. Coppin E, Florentin J, Vasamsetti SB, Arunkumar A, Sembrat J, Rojas M, Dutta P. Splenic hematopoietic stem cells display a pre-activated phenotype. Immunol Cell Biol. 2018; 96(7): 772-784. doi: 10.1111/imcb.12035.10.1111/imcb.12035637914729526053Search in Google Scholar

5. Wang Z, He D, Zeng YY, Zhu L, Yang C, Lu YJ, Huang JQ, Cheng XY, Huang XH, Tan XJ. The spleen may be an important target of stem cell therapy for stroke. J Neuroinflammation. 2019;16(1):20. doi: 10.1186/s12974-019-1400-0.10.1186/s12974-019-1400-0635244930700305Search in Google Scholar

6. Vahidy FS, Parsha KN, Rahbar MH, Lee M, Bui T-T, Nguyen C, Savitz SI. Acute splenic responses in patients with ischemic stroke and intracerebral hemorrhage. J Cereb Blood Flow Metabo. 2015; 36(6), 1012–1021. doi: 10.1177/0271678x1560788010.1177/0271678X15607880490862026661179Search in Google Scholar

7. Kim E, Yang J, Beltran CD, Cho S. Role of Spleen-Derived Monocytes/Macrophages in Acute Ischemic Brain Injury. J Cereb Blood Flow Metab. 2014; 34(8), 1411–1419. doi: 10.1038/jcbfm.2014.10110.1038/jcbfm.2014.101412608724865998Search in Google Scholar

8. Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P, Aikawa E, Mempel TR, Libby P, Weissleder R, Pittet MJ. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 2009;325:612–616. doi: 10.1126/science.1175202.10.1126/science.1175202280311119644120Search in Google Scholar

9. Zouggari Y, Ait-Oufella H, Bonnin P, et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med. 2013;19:1273–1280. doi: 10.1038/nm.3284.10.1038/nm.3284404292824037091Search in Google Scholar

10. Prabhu SD, Frangogiannis NG. The Biological Basis for Cardiac Repair After Myocardial Infarction. Circ Res. 2016; 119(1), 91-112. doi: 10.1161/circresaha.116.30357710.1161/CIRCRESAHA.116.303577492252827340270Search in Google Scholar

11. Frangogiannis NG. Cell biological mechanisms in regulation of the post-infarction inflammatory response. Cur Opin Physiol. 2018; 7–13. doi: 10.1016/j.cophys.2017.09.00110.1016/j.cophys.2017.09.001585146829552674Search in Google Scholar

12. Sprogøe-Jakobsen S, Sprogøe-Jakobsen U. The weight of the normal spleen. Forensic Sci Int. 1997;88(3):215-23.10.1016/S0379-0738(97)00103-5Search in Google Scholar

13. Ferreira T., Rasband W. Image J User Guide. Image Processing and Analysis in Java. National Institutes of Health. 2012. http://rsb.info.nih.gov/ij.Search in Google Scholar

14. Sejrup JK, Morelli VM, Løchen M-L, Njølstad I, Mathiesen EB, WilsgaardT, Braekkan SK. Myocardial infarction, prothrombotic genotypes, and venous thrombosis risk: The Tromsø Study. Res Prac Thromb Haemost. 2020; 4(2), 247– 254. doi: 10.1002/rth2.1230610.1002/rth2.12306704054732110755Search in Google Scholar

15. Jortveit J, Govatsmark RE, Langørgen J, Hole T, Mannsverk J, Olsen S, Risøe C, Halvorsen S. Gender differences in the assessment and treatment of myocardial infarction. Tidsskr Nor Laegeforen. 2016;136(14-15):1215-22. doi: 10.4045/tidsskr.16.0224.10.4045/tidsskr.16.022427554562Search in Google Scholar

16. Pedersen LR, Frestad D, Michelsen MM, Mygind ND, Rasmusen H, Suhrs HE, Prescott E. Risk Factors for Myocardial Infarction in Women and Men: A Review of the Current Literature. Curr Pharm Des. 2016;22(25):3835-52.10.2174/138161282266616030911531826956230Search in Google Scholar

17. Liang Y, Chen H, Wang P. Correlation of Leukocyte and Coronary Lesion Severity of Acute Myocardial Infarction. Angiology. 2018; 69(7), 591–599. doi: 10.1177/000331971774078210.1177/000331971774078229130316Search in Google Scholar

18. Yuan D, Tie J, Xu Z, Liu G, Ge X, Wang Z, Zhou X.. Dynamic Profile of CD4+ T-Cell-Associated Cytokines/Chemokines following Murine Myocardial Infarction/Reperfusion. Mediators of Inflamm. 2019; 2019:9483647. doi: 10.1155/2019/948364710.1155/2019/9483647644249231011288Search in Google Scholar

19. Avci E, Kiris T, Çelik A, Variş E, Esin FK, Köprülü D, Kadi H. Prognostic value of rising mean platelet volume during hospitalization in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention. BMC Cardiovasc Disord. 2018;18(1):226. doi: 10.1186/s12872-018-0970-6.10.1186/s12872-018-0970-6628655930526502Search in Google Scholar

20. Fang L, Moore XL, Dart MA, Wang LM. Systemic Inflammatory Response Following Acute Myocardial Infarction. J Geriatr Cardiol. 2015;12(3): 305-12. doi: 10.11909/j.issn.1671-5411.2015.03.020.Search in Google Scholar

21. Van Amerongen MJ, Harmsen MC, van Rooijen N, Petersen AH, van Luyn MJ. Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am J Pathol. 2007; 170(3):818-29. doi: 10.2353/ajpath.2007.06054710.2353/ajpath.2007.060547186489317322368Search in Google Scholar

22. Horváth E., Orădan A., Chiriac L., Dobreanu M., Nagy EE., Voidăzan S., Berei R., Muntean DL., Huțanu A. Fish-oil Preconditioning Up-regulates Expression of Splenic Arg1 Positive M2 Type Macrophages and the Arg1/Inos2 Ratio After Experimental Induced Transient Cerebral Ischemia. Farmacia, 2019; 67(5): 820-829.10.31925/farmacia.2019.5.10Search in Google Scholar

23. O’Malley DP, George TI, Orazi A, Abbondanzo SL. Benign and Reactive Conditions of Lymph Node and Spleen (Atlas of Nontumor Pathology). Amer Registry of Pathology. 1 edition. 2009; 10-15, 75-93.Search in Google Scholar

24. Prabhu SD. The Cardiosplenic Axis is Essential for the Pathogenesis of Ischemic Heart Failure. Trans Am Clin Climatol Assoc. 2018; 129:202-214.Search in Google Scholar

25. Courties G, Herisson F, Sager HB, Ye Y, Wei Y, Sun Y, Severe N, Dutta P, Scharff J, Scadden DT, Weissleder R, Swirski FK, Moskowitz MA, Nahrendorf M. Ischemic Stroke Activates Hematopoietic Bone Marrow Stem Cells. Circ Res. 2015; 116(3): 407–417. doi: 10.1161/CIRCRESAHA.116.305207.10.1161/CIRCRESAHA.116.305207431251125362208Search in Google Scholar

26. Horváth E, Huțanu A, Orădan A, Chiriac L, Muntean DL, Nagy EE, Dobreanu M. N-3 polyunsaturated fatty acids induce granulopoiesis and early monocyte polarization in the bone marrow of a tMCAO rat model. N-3 polyunsaturated fatty acids induce granulopoiesis and early monocyte polarization in the bone marrow of a tMCAO rat model. Revista Română de Medicină de Laborator (Romanian Journal of Laboratory Medicine). 2019; 27(1): 1841-6624. doi.10.2478/rrlm-2019-0004.wwwww10.2478/rrlm-2019-0004Search in Google Scholar

eISSN:
2537-5059
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Medicine, Clinical Medicine, Pharmacy