Cite

1. Mechoulam R, Hanus L. A historical overview of chemical research on cannabinoids. Chem Phys Lipids. 2000;108:1-13.10.1016/S0009-3084(00)00184-5Search in Google Scholar

2. Gaoni Y, Mechoulam R. Isolation, structure and partial synthesis of an active constituent of hashish. J. Am. Chem. Soc. 1964;86:1646–47.10.1021/ja01062a046Search in Google Scholar

3. Mechoulam R, Gaoni Y. The absolute configuration of D1-tetrahydrocannabinol, the major active constituent of hashish. Tetrahedron Lett. 1967;12:1109–11.10.1016/S0040-4039(00)90646-4Search in Google Scholar

4. Devane WA, Dysarz FA, Johnson MR, Melvin LS, Howlett AC. Determination and characterization of a cannabinoid receptor in rat brain. Mol. Pharmacol. 1988;34:605–13.Search in Google Scholar

5. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258:1946–49.10.1126/science.14709191470919Search in Google Scholar

6. Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodriguez F. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor ppar-alpha. Nature. 2003;425:90–3.10.1038/nature0192112955147Search in Google Scholar

7. Lutz B. Molecular biology of cannabinoid receptors. Prostaglandins Leukot. Essent. Fatty Acids 2002;66:123–42.10.1054/plef.2001.034212052031Search in Google Scholar

8. Freundt-Revilla J, Kegler K, Baumgärtner W, Tipold A. Spatial distribution of cannabinoid receptor type 1 (CB1) in normal canine central and peripheral nervous system. PLoS One. 2017;12(7):e0181064.10.1371/journal.pone.0181064550728928700706Search in Google Scholar

9. Pertwee RG. Endocannabinoids and Their Pharmacological Actions. In: Pertwee R. (eds) Endocannabinoids. 2015, Handbook of Experimental Pharmacology, vol 231. Springer, Cham.10.1007/978-3-319-20825-1Search in Google Scholar

10. Horn H, Böhme N, Dietrich L, Koch M. Endocannabinoids in body weight control. Pharmaceuticals. 2018;11(55):1-48.10.3390/ph11020055602716229849009Search in Google Scholar

11. Kano M. Control of synaptic function by endocannabinoid-mediated retrograde signaling, Proc. Jpn. Acad. Ser. B. 2014;90(7):235-50.10.2183/pjab.90.235423789525169670Search in Google Scholar

12. Turu G, Hunyady L. Signal transduction of the CB1 cannabinoid receptor. J. Mol. Endocrinol. 2010;44:75–85.10.1677/JME-08-0190Search in Google Scholar

13. Di Marzo V. Endocannabinoid signaling in the brain: biosynthetic mechanisms in the limelight. Nat Neurosci. 2011;14(1):9-15.10.1038/nn.272021187849Search in Google Scholar

14. Ianotti F, Di Marzo V, Ptrosino S. Endocannabinoids and endocannabinoid-related mediators: Targets, metabolism and role in neurological disorders. Prog. Lipid research. 2016;62:107-28.10.1016/j.plipres.2016.02.002Search in Google Scholar

15. Tanimura A, Yamazaki M, Hashimotodani Y, Uchigashima M, Kawata S, Abe M, et al. The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase alpha mediates retrograde suppression of synaptic transmission. Neuron. 2010;65:320-27.10.1016/j.neuron.2010.01.02120159446Search in Google Scholar

16. Blankman JL, Cravatt BF. Chemical probes of endocannabinoid metabolism. Pharmacol. Rev. 2013;65:849–71.10.1124/pr.112.006387Search in Google Scholar

17. Navarrete M, Araque A. Endocannabinoids mediate neuron-astrocyte communication. Neuron. 2008;57:883–93.10.1016/j.neuron.2008.01.02918367089Search in Google Scholar

18. Scheller A, Kirchhoff F. Endocannabinoids and heterogeneity of glial cells in brain function. Front. Integr. Neurosci. 2016;10(24):1-6.10.3389/fnint.2016.00024Search in Google Scholar

19. Benard G, Massa F, Puente N, Lourenco J, Bellocchio L, Soria-Gomez E et al. Mitochondrial CB(1) receptors regulate neuronal energy metabolism. Nat. Neurosci. 2012;15:558–64.10.1038/nn.3053Search in Google Scholar

20. Hui-Chen L, Makie C. An introduction to the endogenous cannabinoid system. Biol Psychiatry. 2016;79(7):516-25.10.1016/j.biopsych.2015.07.028478913626698193Search in Google Scholar

21. Glaser ST, Abumrad NA, Fatade F, Kaczocha M, Studholme KM, Deutsch, DG. Evidence against the presence of an anandamide transporter. Proc. Natl. Acad. Sci. USA 2003;100:4269–74.10.1073/pnas.073081610015308212655057Search in Google Scholar

22. Seillier A, Giuffrida A. The cannabinoid transporter inhibitor omdm-2 reduces social interaction: further evidence for transporter-mediated endocannabinoid release. Neuropharmacology. 2018;130:1–9.10.1016/j.neuropharm.2017.11.03229169961Search in Google Scholar

23. Nicolussi S, Gertsch J. Endocannabinoid Transport Revisited. Vitam Horm. 2015;98:441-85.10.1016/bs.vh.2014.12.01125817877Search in Google Scholar

24. Jong-Woo S. Network of hypothalamic neurons that control appetite. BMB Rep. 2015;48(4):229-33.10.5483/BMBRep.2015.48.4.272443685925560696Search in Google Scholar

25. Kun I.Z, Szántó Zs. Neuroendocrinologia, Cluj-Napoca: Erdélyi Múzeum Egyesület, 2012. p. 53-60.Search in Google Scholar

26. Tong Q, Ye CP, Jones JE, Elmquist JK, Lowell BB. Synaptic release of GABA by AgRP neurons is required for normal regulation ofenergy balance. Nat. Neurosci. 2008;11:998–1000.10.1038/nn.2167Search in Google Scholar

27. Varela L, Horvath TL. Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Reports. 2012;13(12):1079–8610.1038/embor.2012.174351241723146889Search in Google Scholar

28. Koch M, Varela L, Kim JG, Kim JD, Hernández-Nuño F, Simonds SE et al. Hypothalamic pomc neurons promote cannabinoid-induced feeding. Nature 2015;519:45–50.10.1038/nature14260449658625707796Search in Google Scholar

29. Osei-Hyiaman D, Depetrillo M, Harvey-White J, Bannon AW, Cravatt BF, Huhar MJ et al. Cocaine- and amphetamine-related transcript is involved in the orexigenic effect of endogenous anandamide. Neuroendocrinology. 2005;81(4):273-82.10.1159/00008792516131814Search in Google Scholar

30. Huang H, Acuna-Goycolea C, Li Y, Cheng HM, Obrietan K, Van den Pol AN Cannabinoids excite hypothalamic melanin-concentrating hormone but inhibit hypocretin/orexin neurons: Implications for cannabinoid actions on food intake and cognitive arousal. J. Neurosci. 2007;27:4870–81.10.1523/JNEUROSCI.0732-07.2007667209317475795Search in Google Scholar

31. Jo YH, Chen YJ, Chua SC, Talmage DA, Role LW. Integration of endocannabinoid and leptin signaling in an appetite-related neural circuit. Neuron. 2005;48:1055–66.10.1016/j.neuron.2005.10.021228003916364907Search in Google Scholar

32. Maziner W, Saucisse N, Gatta-Cherifi B, Cota D. The Endocannabinoid System: Pivotal Orchestrator of Obesity and Metabolic Disease. Tends Endocrinol Metab. 2015;26(10):524-37.10.1016/j.tem.2015.07.00726412154Search in Google Scholar

33. Parker J, Bloom S. Hypothalamic neuropeptides and the regulation of appetite. Neuropharm. 2012;63(1):18-30.10.1016/j.neuropharm.2012.02.00422369786Search in Google Scholar

34. Tung LW, Lu GL, Lee YH, Yu L, Lee HJ, Leishman E, et al. Orexins contribute to restraint stress-induced cocaine relapse by endocannabinoid-mediated disinhibition of dopaminergic neurons. Nat Commun. 2016;22(7):12199.10.1038/ncomms12199496184227448020Search in Google Scholar

35. Crowe MS, Nass SR, Gabella KM, Kinsey SG. The endocannabinoid system modulates stress, emotionality, and inflammation. Brain Behav Immun. 2014;(42):1–5.10.1016/j.bbi.2014.06.00724953427Search in Google Scholar

36. Surkin PN, Gallino SL, Luce V, Correa F, Fernandez-Solari J, De Laurentiis A. Pharmacological augmentation of endocannabinoid signaling reduces the neuroendocrine response to stress. Psychoneuroendocrinology 2018;87:131–40.10.1016/j.psyneuen.2017.10.01529065362Search in Google Scholar

37. Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA et al. International union of pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev. 2002;54:161–202.10.1124/pr.54.2.16112037135Search in Google Scholar

38. Ziegler CG, Mohn C, Lamounier-Zepter V, Rettori V, Bornstein SR, Krug AWet al. Expression and function of endocannabinoid receptors in the human adrenal cortex. Horm Metab Res. 2010;42:88–92.10.1055/s-0029-124186019862666Search in Google Scholar

39. Hill MN, Tasker JG. Endocannabinoid signaling, glucocorticoid-mediated negative feedback, and regulation of the hypothalamic-pituitary-adrenal axis. Neuroscience. 2012;204:5–16.10.1016/j.neuroscience.2011.12.030328846822214537Search in Google Scholar

40. Hillard C, Beatka M, Sarvaidea J. Endocannabinoid signaling and the hypothalamic-pituitary-adrenal axis. Compr Physiol. 2018;7(1):1–15.10.1002/cphy.c160005Search in Google Scholar

41. Evanson NK, Tasker JG, Hill MN, Hillard CJ, Herman JP. Fast feedback inhibition of the HPA axis by glucocorticoids is mediated by endocannabinoid signaling. Endocrinology. 2010;151:4811–19.10.1210/en.2010-0285Search in Google Scholar

42. Behan LA, Monson JP, Agha A. The interaction between growth hormone and the thyroid axis in hypopituitary patients. Clin Endocrinol (Oxf). 2011;74:281–88.10.1111/j.1365-2265.2010.03815.xSearch in Google Scholar

43. Witkowska-Sędek E, Borowiec A, Majcher A, Sobol M, Rumińska M, Pyrżak B. Thyroid function in children with growth hormone deficiency during long-term growth hormone replacement therapy. Cent Eur J Immunol. 2018;43(3):255-61.10.5114/ceji.2018.80043Search in Google Scholar

44. Glynn N, Kenny H, Quisenberry L, Halsall DJ, Cook P, Kyaw Tun T et al. The effect of growth hormone replacement on the thyroid axis in patients with hypopituitarism: in vivo and ex vivo studies. Clin Endocrinol (Oxf). 2017;86(5):747-54.10.1111/cen.13272Search in Google Scholar

45. Wolf M, Ingbar SH, Moses AC. Thyroid hormone and growth hormone interact to regulate insulin-like growth factor-i messenger ribonucleic acid and circulating levels in the rat. Endocrinology. 1989;125:2905–14.10.1210/endo-125-6-2905Search in Google Scholar

46. Li Z, Schmidt SF, Friedman JM. Developmental role for endocannabinoid signaling in regulating glucose metabolism and growth. Diabetes. 2013;62:2359–67.10.2337/db12-0901Search in Google Scholar

47. Hillard CJ, Farber NE, Hagen TC, Bloom AS. The effects of delta 9-tetrahydrocannabinol on serum thyrotropin levels in the rat. Pharmacol Biochem Behav. 1984;20:547–50.10.1016/0091-3057(84)90303-4Search in Google Scholar

48. Porcella A, Marchese G, Casu MA, Rocchitta A, Lai ML, Gessa GL et al. Evidence for functional cb1 cannabinoid receptor expressed in the rat thyroid. Eur J Endocrinol. 2002;147:255-61.10.1530/eje.0.147025512153749Search in Google Scholar

49. Da Veiga MA, Fonseca Bloise F, Costa ES, Souza LL, Almeida NA, Oliveira KJ et al. Acute effects of endocannabinoid anandamide and CB1 receptor antagonist, AM251 in the regulation of thyrotropin secretion. J Endocrinol. 2008;199:235–42.10.1677/JOE-08-038018755884Search in Google Scholar

50. Pagotto U, Marsicano G, Fezza F, Theodoropoulou M, Grubler Y, Stalla J et al. Normal human pituitary gland and pituitary adenomas express cannabinoid receptor type 1 and synthesize endogenous cannabinoids: First evidence for a direct role of cannabinoids on hormone modulation at the human pituitary level. J Clin Endocrinol Metab. 2001;86:2687–96.10.1210/jc.86.6.2687Search in Google Scholar

51. Izzo AA, Sharkey KA. Cannabinoids and the gut: New developments and emerging concepts. Pharmacol Ther. 2010;126:21–38.10.1016/j.pharmthera.2009.12.00520117132Search in Google Scholar

52. Fichna J, Bawa M, Thakur GA, Tichkule R, Makriyannis A, McCafferty DM et al. Cannabinoids alleviate experimentally induced intestinal inflammation by acting at central and peripheral receptors. PLoS ONE 2014;9:e109115.10.1371/journal.pone.0109115418354425275313Search in Google Scholar

53. Kinsey SG, Nomura DK, O’Neal ST, Long JZ, Mahadevan A, Cravatt BF et al. Inhibition of monoacylglycerol lipase attenuates nonsteroidal anti-inflammatory drug-induced gastric hemorrhages in mice. J Pharmacol Exp Ther. 2011;338:795–802.10.1124/jpet.110.175778316434021659471Search in Google Scholar

54. Massa F, Storr M, Lutz B. The endocannabinoid system in the physiology and pathophysiology of the gastrointestinal tract. J Mol Med (Berl.). 2005;83:944–54.10.1007/s00109-005-0698-5Search in Google Scholar

55. Di Marzo V. Endocannabinoids: An appetite for fat. Proc Natl Acad Sci USA. 2011;108(31):12567–68.10.1073/pnas.1109567108315092421778404Search in Google Scholar

56. Cani PD, Montoya ML, Neyrinck AM, Delzenne NM, Lambert DM. Potential modulation of plasma ghrelin and glucagon-like peptide-1 by anorexigenic cannabinoid compounds, SR141716A (rimonabant) and oleoylethanolamide. Br J Nutr. 2004;92:757–61.10.1079/BJN2004125615533263Search in Google Scholar

57. Rehfeld JF, Friis-Hansen L, Goetze JP, Hansen TV. The biology of cholecystokinin and gastrin peptides. Curr Top Med Chem. 2007;7(12):1154-65.10.2174/15680260778096048317584137Search in Google Scholar

58. Jerlhag E, Egecioglu E, Dickson SL, Douhan A, Svensson L, Engel JA. Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens. Addict Biol. 2007;12(1):6-16.10.1111/j.1369-1600.2006.00041.x17407492Search in Google Scholar

59. Page AJ, Slattery JA, Milte C, Laker R, O’Donnell T, Dorian C et al. Ghrelin selectively reduces mechanosensitivity of upper gastrointestinal vagal afferents. Am J Physiol Gastrointest Liver Physiol. 2007;292(5):1376-84.10.1152/ajpgi.00536.200617290011Search in Google Scholar

60. Rousseaux C, Thuru X, Gelot A, Barnich N, Neut C, Dubuquoy L et al. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med. 2007;13(1):35-710.1038/nm152117159985Search in Google Scholar

61. Cani PD, Plovier H, Van Hul M, Geurts L, Delzenne NM, Druart C et al. Endocannabinoids—At the crossroads between the gut microbiota and host metabolism. Nat Rev Endocrinol. 2016;12:133–43.10.1038/nrendo.2015.21126678807Search in Google Scholar

62. Muccioli GG, Naslain D, Bäckhed F, Reigstad CS, Lambert DM, Delzenne NM et al. The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol. 2010;6:392.10.1038/msb.2010.46292552520664638Search in Google Scholar

63. Buettner C, Muse ED, Cheng A, Chen L, Scherer T, Pocai A et al. Leptin controls adipose tissue lipogenesis via central, STAT3-independent mechanisms. Nat Med. 2008;14:667–75.10.1038/nm1775267184818516053Search in Google Scholar

64. Murumalla R, Bencharif K, Gence L, Bhattacharya A, Tallet F, Gonthier MP et al. Effect of the cannabinoid receptor-1 antagonist SR141716A on human adipocyte inflammatory profile and differentiation. J Inflamm (Lond.). 2011;8:33.10.1186/1476-9255-8-33Search in Google Scholar

65. Lima LC, Braga VA, Silva MF, do Socorro de França SM, Cruz JC, Santos SH, et al. Adipokines, diabetes and atherosclerosis: an inflammatory association. Front Physiol. 2015;6:304.10.3389/fphys.2015.00304Search in Google Scholar

66. Belgardt BF, Mauer J, Wunderlich FT, Ernst MB, Pal M, Spohn G, et al. Hypothalamic and pituitary c-Jun N-terminal kinase 1 signaling coordinately regulates glucose metabolism. Proc Natl Acad Sci USA. 2010;107:6028–33.10.1073/pnas.1001796107285191820231445Search in Google Scholar

67. Cota D, Marsicano G, Tschop M, Grubler Y, Flachskamm C, Schubert M et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Investig. 2003;112:423–31.10.1172/JCI1772516629312897210Search in Google Scholar

68. Matias I, Belluomo I, Cota D. The Fat Side of the Endocannabinoid System: Role of Endocannabinoids in the Adipocyte. Cannabis Cannabinoid Res. 2016;1(1):176-85.10.1089/can.2016.0014Search in Google Scholar

69. Bouaboula M, Hilairet S, Marchand J, Fajas L, Le Fur G, Casellas P. Anandamide induced PPAR-gamma transcriptional activation and 3T3-L1 preadipocyte differentia-tion. Eur J Pharmacol. 2005;517:174–81.10.1016/j.ejphar.2005.05.03215987634Search in Google Scholar

70. Karaliota S, Siafaka-Kapadai A, Gontinou C, Psarra K, Mavri-Vavayanni M. Anandamide increases the differentiation of rat adipocytes and causes PPARgamma and CB1 receptor upregulation. Obesity (Silver Spring). 2009;17:1830–8.10.1038/oby.2009.17719543211Search in Google Scholar

71. Jbilo O, Ravinet-Trillou C, Arnone M, Buisson I, Bribes E, Peleraux A et al. The CB1 receptor antagonist rimonabant reverses the diet-induced obesity phenotype through the regulation of lipolysis and energy balance. FASEB J. 2005;19:1567–69.10.1096/fj.04-3177fje16009704Search in Google Scholar

72. Tedesco L, Valerio A, Dossena M, Cardile A, Ragni M, Pagano C et al. Cannabinoid receptor stimulation impairs mitochondrial biogenesis in mouse white adipose tissue, muscle, and liver: The role of enos, p38 mapk, and ampk pathways. Diabetes. 2010;59:2826–36.10.2337/db09-1881296354120739683Search in Google Scholar

73. Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis. Essays Biochem. 2010;47:69-84.10.1042/bse0470069388304320533901Search in Google Scholar

74. Aahi A, Jeschke MG. Taming the flames: targeting white adi-pose tissue browning in hypermetabolic conditions. Endocr Rev. 2017;38(6):538–49.10.1210/er.2017-00163571682828938469Search in Google Scholar

75. Volicer L, Stelly M, Morris J, McLaughlin J, Volicer BJ. Effects of dronabinol on anorexia and disturbed behavior in patients with Alzheimer’s disease. Int J Geriatr Psychiatry. 1997;12(9):913-9.10.1002/(SICI)1099-1166(199709)12:9<913::AID-GPS663>3.0.CO;2-DSearch in Google Scholar

76. Beal JE, Olson R, Lefkowitz L, Laubenstein L, Bellman P, Yangco B et al. Long-term Efficacy and safety of dronabinol for acquired immunodeficiency syndrome-associated anorexia. J Pain Symptom Manage. 1997;14(1):7-14.10.1016/S0885-3924(97)00038-9Search in Google Scholar

77. Pacher P, Steffens S, Haskó G, Schinldler TH, Kunos G. Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly. Nature Rev Card. 2018(15):151–66.10.1038/nrcardio.2017.130Search in Google Scholar

78. Verty AN, Stefanidis A, McAinch AJ, Hryciw DH, Anti-obesity effect of the CB2 receptor agonist JWH-015 in diet-induced obese mice. PLoS One. 2015;10(11):e0140592.10.1371/journal.pone.0140592Search in Google Scholar

79. Hourani W, Stephen PH. Cannabinoid ligands, receptors and enzymes: Pharmacological tools and therapeutic potential. Brain and Neurosci Adv. 2018;2:1–8.10.1177/2398212818783908Search in Google Scholar

80. Chong MS, Wolff K, Wise K, Tanton C, Winstock A, Silber E. Cannabis use in patients with multiple sclerosis. Mult Scler. 2006;12(5):646–51.10.1177/1352458506070947Search in Google Scholar

81. Sam AH, Salem V, Ghatei MA. Rimonabant: from RIO to ban. J Obes. 2011;2011:432607.10.1155/2011/432607Search in Google Scholar

82. Sink KS, McLaughlin PJ, Wood JA, Brown C, Fan P, Vemuri VK et al. The novel cannabinoid CB1 receptor neutral antagonist AM4113 suppresses food intake and food-reinforced behavior but does not induce signs of nausea in rats. Neuropsychopharmacology. 2008;33(4):946-55.10.1038/sj.npp.1301476Search in Google Scholar

83. He XH, Jordan CJ, Vemuri K, Bi GH, Zhan J, Gardner EL et al. Cannabinoid CB1 receptor neutral antagonist AM4113 inhibits heroin self-administration without depressive side effects in rats. Acta Pharmacol Sin. 2018;0:1–9.10.1038/s41401-018-0059-xSearch in Google Scholar

84. Schindler CW, Redhi GH, Vemuri K, Makriyannis A, Le Foll B, Bergman J, et al. Blockade of nicotine and cannabinoid reinforcement and relapse by a cannabinoid CB1-receptor neutral antagonist AM4113 and inverse agonist rimonabant in squirrel monkeys. Neuropsychopharmacology. 2016;41:2283–93.10.1038/npp.2016.27Search in Google Scholar

85. Cinar R, Godlewski G, Liu J, Tam J, Jourdan T, Mukhopadhyay B, et al. Hepatic cannabinoid-1 receptors mediate diet-induced insulin resistance by increasing de novo synthesis of long-chain ceramides. Hepatology. 2014;59(1):143-53.10.1002/hep.26606Search in Google Scholar

86. Knani I, Earley BJ, Udi S, Nemirovski A, Hadar R, Gammal A, et al. Targeting the endocannabinoid/CB1 receptor system for treating obesity in Prader–Willi syndrome. Mol Metab. 2016;5(12):1187–99.10.1016/j.molmet.2016.10.004512320027900261Search in Google Scholar

87. Mukhopadhyay B, Schuebel K, Mukhopadhyay P, Cinar R, Godlewski G, Xiong K et al. Cannabinoid receptor 1 promotes hepatocellular carcinoma initiation and progression through multiple mechanisms. Hepatology. 2015;61(5):1615-26.10.1002/hep.27686440681725580584Search in Google Scholar

88. Klumpers L, Fridberg MJ, de Kam ML, Van Gerven JM. Peripheral selectivity of the novel cannabinoid receptor antagonist TM38837 in healthy subjects. Br J Clin Pharmacol. 2013;76(6):846-57.10.1111/bcp.12141384530823601084Search in Google Scholar

89. Cawston EE, Redmond WJ, Breen CM, Grimsey NL, Connor M, Glass M. Real-time characterization of cannabinoid receptor 1 (CB1) allosteric modulators reveals novel mechanism of action. Br J Pharmacol. 2013;170(4):893-907.10.1111/bph.12329379960223937487Search in Google Scholar

90. Sabatucci A, Tortolani D, Dainese E, Maccarrone M. In silico mapping of allosteric ligand binding sites in type-1 cannabinoid receptor. Biotechnol Appl Biochem. 2018;65:21-8.10.1002/bab.158928833445Search in Google Scholar

91. Tham M, Yilmaz O, Alaverdashvili M, Kelly ME, Denovan-Wright EM, Laprairie RB. Allosteric and orthosteric pharmacology of cannabidiol and cannabidiol-dimethylheptyl at the type 1 and type 2 cannabinoid receptors. Br J Pharmacol. [Internet] 2018 Jul [cited 2019 Feb. 8]; Available from: https://www.ncbi.nlm.nih.gov/pubmed/29981240 DOI: 10.1111/bph.14440.10.1111/bph.14440648755629981240Search in Google Scholar

92. Monteleone P, Matias I, Martiadis V, De Petrocellis L, Maj M, Di Marzo V. Blood levels of the endocannabinoid anandamide are increased in anorexia nervosa and in binge-eating disorder, but not in bulimia nervosa. Neuropsychopharmacology 2005;30(6):1216–21.10.1038/sj.npp.130069515841111Search in Google Scholar

93. Monteleone AM, Di Marzo V, Aveta T, Piscitelli F, Dalle Grave R, Scognamiglio P et al. Deranged endocannabinoid responses to hedonic eating in underweight and recently weight-restored patients with anorexia nervosa. Am J Clin Nutr. 2015;101(2)262–9.10.3945/ajcn.114.09616425646322Search in Google Scholar

94. Nozaki C, Markert A, Zimmer A. Inhibition of faah reduces nitroglycerin-induced migraine-like pain and trigeminal neuronal hyperactivity in mice. Eur Neuropsychopharmacol. 2015;25:1388–96.10.1016/j.euroneuro.2015.04.00125910421Search in Google Scholar

95. Bhuniya D, Kharul RK, Hajare A, Shaikh N, Bhosale S, Balwe S et al. Discovery and evaluation of novel FAAH inhibitors in neuropathic pain model. Bioorg Med Chem Lett. 2019;29(2):238-243.10.1016/j.bmcl.2018.11.04830503633Search in Google Scholar

96. Tuo W, Leleu-Chavain N, Spencer J, Sansook S, Millet R, Chavatte P. Therapeutic potential of fatty acid amide hydrolase, monoacylglycerol lipase, and N-acylethanolamine acid amidase inhibitors. Jour Med Chem. 2017;60(1):4-46.10.1021/acs.jmedchem.6b0053827766867Search in Google Scholar

97. ClinicalTrials.gov [internet] Bethesda (MD), NIH, U.S. National library of medicine. [cited 2019 Jan 29]; [about 2 screens]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT02134080?term=PF-04457845&rank=8Search in Google Scholar

98. ClinicalTrials.gov [internet] Bethesda (MD), NIH, U.S. National library of medicine. [cited 2019 Jan 29]; [about 2 screens]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT03386487?term=PF-04457845&rank=6Search in Google Scholar

99. ClinicalTrials.gov [internet ] Bethesda (MD), NIH, U.S. National library of medicine. [cited 2019 Jan 29]; [about 2 screens]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT03664232?term=JNJ-42165279&rank=2Search in Google Scholar

100. ClinicalTrials.gov [internet ] Bethesda (MD), NIH, U.S. National library of medicine. [cited 2019 Jan 29]; [about 2 screens]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT02498392?term=JNJ-42165279&rank=5Search in Google Scholar

101. ClinicalTrials.gov [internet ] Bethesda (MD), NIH, U.S. National library of medicine. [cited 2019 Jan 29]; [about 2 screens]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT01439919?term=SSR411298&rank=1Search in Google Scholar

102. ClinicalTrials.gov [internet ] Bethesda (MD), NIH, U.S. National library of medicine. [cited 2019 Jan 29]; [about 2 screens]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT00822744?term=SSR411298&rank=2Search in Google Scholar

103. ClinicalTrials.gov [internet ] Bethesda (MD), NIH, U.S. National library of medicine. [cited 2019 Jan 29]; [about 2 screens]. Available from: https://www.clinicaltrials.gov/ct2/show/results/NCT01748695?term=V158866&rank=1Search in Google Scholar

104. Mallet C, Dubray C, Dualé C. FAAH inhibitors in the limelight, but regrettably. Int Jour Clin Pharm Ther. 2016(54):498-501.10.5414/CP202687494164327191771Search in Google Scholar

105. Mulvihill MM, Nomura DK. Therapeutic potential of monoacylglycerol lipase inhibitors. Life Sci. 2013;92(8-9):492-7.10.1016/j.lfs.2012.10.025359446223142242Search in Google Scholar

106. Nomura DK, Morrison BE, Blankman JL, Long JZ, Kinsey SG, Marcondes MC, et al. Endocannabinoid hydrolysis generates brain prostaglandins that promote neuro-inflammation. Science. 2011;334:809–13.10.1126/science.1209200324942822021672Search in Google Scholar

107. Chung YC, Bok E, Huh SH, Park JY, Yoon SH, Kim SR, et al. Cannabinoid receptor type-1 protects nigrostriatal dopaminergic neurons against MPTP neurotoxicity by inhibiting microglial activation. J Immunol 2011;187:6508–17.10.4049/jimmunol.110243522079984Search in Google Scholar

108. Ramirez BG, Blazquez C, Gomez del Pulgar T, Guzman M, de Ceballos ML. Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci 2005;25:1904–13.10.1523/JNEUROSCI.4540-04.2005672606015728830Search in Google Scholar

109. Nomura DK, Lombardi DP, Chang JW, Niessen S, Ward AM, Long JZ et al. Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer. Chem Biol 2011;18:846–56.10.1016/j.chembiol.2011.05.009314984921802006Search in Google Scholar

110. Sciolino NR, Zhou W, Hohmann AG. Enhancement of endocannabinoid signaling with JZL184, an inhibitor of the 2-arachidonoylglycerol hydrolyzing enzyme monoacyl-glycerol lipase, produces anxiolytic effects under conditions of high environmental aversiveness in rats. Pharmacol Res. 2011;64:226–34.10.1016/j.phrs.2011.04.010314082821600985Search in Google Scholar

111. Alapafuja SO, Malamas MS, Shukla V, Zvonok A, Miller S, Daily L et al. Synthesis and evaluation of potent and selective MGL inhibitors as a glaucoma treatment. Bioorg Med Chem. 2019;27(1):55-64.10.1016/j.bmc.2018.11.003834440930446439Search in Google Scholar

eISSN:
2537-5059
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Medicine, Clinical Medicine, Pharmacy