Cite

1. Kucerova J, Babinska Z, Horska K, Kotolova H. The common pathophysiology underlying the metabolic syndrome, schizophrenia and depression. A review. Biomed. Pap. Med. Fac. Univ. Palacký, Olomouc, Czechoslov. 2015;159:208–14.10.5507/bp.2014.060Search in Google Scholar

2. Barnard K, Peveler RC, Holt RIG. Antidepressant medication as a risk factor for type 2 diabetes and impaired glucose regulation. Diabetes Care. 2013;36:3337–45.10.2337/dc13-0560Open DOISearch in Google Scholar

3. Olguner Eker O, Ozsoy S, Eker B, Dogan H. Metabolic Effects of Antidepressant Treatment. Noro Psikiyatr. Ars. 2017;54:49–56.10.5152/npa.2016.12373Search in Google Scholar

4. Corruble E, El Asmar K, Trabado S, Verstuyft C, Falissard B, Colle R, et al. Treating major depressive episodes with antidepressants can induce or worsen metabolic syndrome: Results of the METADAP cohort. World Psychiatry. 2015;14:366–7.10.1002/wps.20260Search in Google Scholar

5. Anacker C, Zunszain P, Cattaneo A, Carvalho L, Garabedian M, Thuret S, et al. Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor. Mol. Psychiatry. 2011;16:738–50.10.1038/mp.2011.2621483429Open DOISearch in Google Scholar

6. Anacker C, Zunszain PA, Carvalho LA, Pariante CM. The glucocorticoid receptor: Pivot of depression and of antidepressant treatment? Eur. PMC. 2012;36:415–25.10.1016/j.psyneuen.2010.03.007Search in Google Scholar

7. Pariante CM. Why are depressed patients inflamed? A reflection on 20 years of research on depression, glucocorticoid resistance and inflammation. Eur. Neuropsychopharmacol. 2017;27:554–9.10.1016/j.euroneuro.2017.04.001Open DOISearch in Google Scholar

8. Kun IZ, Szántó Z. Mi változott a metabolikus szindróma értelmezésében, diagnózisában és kórtanában az utóbbi huszonöt évben ? Orvostudományi Értesítő. 2013;88:53–68.Search in Google Scholar

9. Kun IZ, Szántó Z, Kun I, Kolcsár M. Konvencionális és atípusos antipszichotikumok okozta metabolikus szindróma. Orvostudományi Értesítő. 2017;90:7–18.Search in Google Scholar

10. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, et al. Diabetes and Cancer: A Consensus Report. CA. Cancer J. Clin. 2010;60:207–21.10.3322/caac.20078Search in Google Scholar

11. Halmos T, Suba I. Type 2 diabetes and metabolic syndrome as conditions leading to malignant tumors. Orv. Hetil. 2008;149:2403–11.10.1556/oh.2008.28507Search in Google Scholar

12. Kékes E, Kiss I. A metabolikus szindróma értelmezése. Hypertonia és Nephrol. 2012;16:193–9.Search in Google Scholar

13. Pierotti M, Berrino F, Gariboldi M, Melani C, Mogavero A, Negri T, et al. Targeting metabolism for cancer treatment and prevention: metformin, an old drug with multi-faceted effects. Oncogene. Nature Publishing Group; 2012;32:1475–87.10.1038/onc.2012.181Search in Google Scholar

14. Kun IZ, Kun I, Kun IZJ. Metabolikus szindróma, diabetes mellitus és a rosszindulatú daganatok. Orvostudományi Értesítő. 2015;88:7–18.Search in Google Scholar

15. Serretti A, Mandelli L. Antidepressants and body weight: a comprehensive review and meta-analysis. J. Clin. Psychiatry. 2010;71:1259–72.10.4088/JCP.09r05346bluSearch in Google Scholar

16. Bak M, Fransen A, Janssen J, van Os J, Drukker M. Almost all antipsychotics result in weight gain: a meta-analysis. PLoS One. 2014;9:e94112.10.1371/journal.pone.0094112Search in Google Scholar

17. Neal MJ (ford. Laszlovszky István). Rövid farmakológia. B+V Lapés Könyvkiadó Kft; 2000; 62-63.Search in Google Scholar

18. Magyar K, Bagdy G, Szökő É, Juhász G. Antidepresszív és antimániás vegyületek. In: Gyires K, Fürst Z, Ferdinándy P, editors. Farmakológia és klinikai farmakológia. Medicina, Budapest; 2017. p. 457–66.Search in Google Scholar

19. Salvi V, Mencacci C, Barone-Adesi F. H1-histamine receptor affinity predicts weight gain with antidepressants. Eur. Neuropsychopharmacol. Elsevier; 2016;26:1673–7.10.1016/j.euroneuro.2016.08.012Search in Google Scholar

20. Hinze-Selch D, Schuld A, Kraus T, Kühn M, Uhr M, Haack M, et al. Effects of antidepressants on weight and on the plasma levels of leptin, TNF-alpha and soluble TNF receptors: A longitudinal study in patients treated with amitriptyline or paroxetine. Neuropsychopharmacology. 2000;23:13–9.10.1016/S0893-133X(00)00089-0Open DOISearch in Google Scholar

21. Berilgen MS, Bulut S, Gonen M, Tekatas A, Dag E, Mungen B. Comparison of the effects of amitriptyline and flunarizine on weight gain and serum leptin, C peptide and insulin levels when used as migraine preventive treatment. Cephalalgia. 2005;25:1048–53.10.1111/j.1468-2982.2005.00956.xSearch in Google Scholar

22. Ruetsch O, Viala A, Bardou H, Martin P, Vacheron MN. [Psychotropic drugs induced weight gain: a review of the literature concerning epidemiological data, mechanisms and management]. Encephale. 31:507–16.10.1016/S0013-7006(05)82412-1Search in Google Scholar

23. Chokka P, Tancer M, Yeragani VK. Metabolic syndrome: relevance to antidepressant treatment. J. Psychiatry Neurosci. 2006;31:414.Search in Google Scholar

24. Orzack MH, Friedman LM, Marby DW. Weight changes on fluoxetine as a function of baseline weight in depressed outpatients. Psychopharmacol. Bull. 1990;26:327–30.Search in Google Scholar

25. McIntyre RS, Park KY, Law CWY, Sultan F, Adams A, Lourenco MT, et al. The association between conventional antidepressants and the metabolic syndrome: A review of the evidence and clinical implications. CNS Drugs. 2010;24:741–53.10.2165/11533280-000000000-0000020806987Open DOISearch in Google Scholar

26. Wolkowitz OM, Burke H, Epel ES, Reus VI. Glucocorticoids: Mood, memory, and mechanisms. Ann. N. Y. Acad. Sci. 2009;1179:19–40.10.1111/j.1749-6632.2009.04980.x19906230Open DOISearch in Google Scholar

27. Sauvé B, Koren G, Walsh G, Tokmakejian S, Van Uum SHM. Measurement of cortisol in human hair as a biomarker of systemic exposure. Clin. Investig. Med. 2007;30Sauvé, B:183–92.10.25011/cim.v30i5.289417892760Open DOISearch in Google Scholar

28. Russell E, Koren G, Rieder M, Van Uum S. Hair cortisol as a biological marker of chronic stress: Current status, future directions and unanswered questions. Psychoneuroendocrinology. Elsevier Ltd; 2012;37:589–601.10.1016/j.psyneuen.2011.09.009Search in Google Scholar

29. Staufenbiel SM, Penninx BWJH, Spijker AT, Elzinga BM, van Rossum EFC. Hair cortisol, stress exposure, and mental health in humans: A systematic review. Psychoneuroendocrinology. 2013;8:1220-35.10.1016/j.psyneuen.2012.11.01523253896Search in Google Scholar

30. Wester VL, Staufenbiel SM, Veldhorst MAB, Visser JA, Manenschijn L, Koper JW, et al. Long-term cortisol levels measured in scalp hair of obese patients. Obesity. 2014;22:1956–8.10.1002/oby.2079524852462Search in Google Scholar

31. Kecskeméti V. Antipszichotikus hatású gyógyszerek kardiális mellékhatásai: ritmuszavarok és a hirtelen szívhalál hatásmechanizmusa. Neuropsychopharmacol. Hungarica. 2004;VI:5–12.Search in Google Scholar

32. Raeder MB, Bjelland I, Emil Vollset S, Steen VM. Obesity, dyslipidemia, and diabetes with selective serotonin reuptake inhibitors: the Hordaland Health Study. J. Clin. Psychiatry. 2006;67:1974–82.10.4088/JCP.v67n1219Search in Google Scholar

33. Michelson D, Amsterdam JD, Quitkin FM, Reimherr FW, Rosenbaum JF, Zajecka J, et al. Changes in weight during a 1-year trial of fluoxetine. Am. J. Psychiatry. 1999;156:1170–6.10.1176/ajp.156.8.1170Search in Google Scholar

34. Afkhami-Ardekani M, Sedghi H. Effect of fluoxetine on weight reduction in obese patients. Indian J. Clin. Biochem. 2005;20:135–8.10.1007/BF02893059Search in Google Scholar

35. Beyazyüz M, Albayrak Y, Eğilmez OB, Albayrak N, Beyazyüz E. Relationship between SSRIs and Metabolic Syndrome Abnormalities in Patients with Generalized Anxiety Disorder: A Prospective Study. Psychiatry Investig. 2013;10:148–54.2379896310.4306/pi.2013.10.2.148368704923798963Search in Google Scholar

36. Blumenthal SR, Castro VM, Clements CC, Rosenfield HR, Murphy SN, Fava M, et al. An electronic health records study of long-term weight gain following antidepressant use. JAMA psychiatry. 2014;71:889–96.10.1001/jamapsychiatry.2014.41424898363Search in Google Scholar

37. Schatzberg F., DeBattista C. Manual of Clinical Psychopharmacology. Eight Edit. Washington, DC, London: American Psychiatric Publishing; 2015.10.1176/appi.books.9781615370047Search in Google Scholar

38. Stahl S. Stahl’s Essential Psychopharmacology. Forth Edit. Cambridge University Press; 2013; 284-346.Search in Google Scholar

39. Kahl KG, Westhoff-Bleck M, Krüger THC. Effects of psychopharmacological treatment with antidepressants on the vascular system. Vascul. Pharmacol. 2017;96–98:11–8.10.1016/j.vph.2017.07.00428754273Search in Google Scholar

40. Sanchez C, Asin KE, Artigas F. Vortioxetine, a novel antidepressant with multimodal activity: Review of preclinical and clinical data. Pharmacol. Ther. Pergamon; 2015;145:43–57.10.1016/j.pharmthera.2014.07.001Search in Google Scholar

41. Baldwin DS, Chrones L, Florea I, Nielsen R, Nomikos GG, Palo W, et al. The safety and tolerability of vortioxetine: Analysis of data from randomized placebo-controlled trials and open-label extension studies. J. Psychopharmacol. SAGE PublicationsSage UK: London, England; 2016;30:242–52.10.1177/0269881116628440479408226864543Open DOISearch in Google Scholar

42. Garvey WT, Mechanick JI, Brett EM, Garber AJ, Hurley DL, Jastreboff AM, et al. American Association of Clinical Endocrinologists and American College of Endocrinology Comprehensive Clinival Practice Guidelines for Medical Care of Patients with Obesity. Endocr. Pract. 2016;22:1–203.10.4158/EP161365.GLSearch in Google Scholar

43. Malhotra S, King KH, Welge JA, Brusman-Lovins L, McElroy SL. Venlafaxine treatment of binge-eating disorder associated with obesity: a series of 35 patients. J. Clin. Psychiatry. 2002;63:802–6.10.4088/JCP.v63n090912363121Open DOISearch in Google Scholar

44. Imre A, Kolcsár M, Groşan A, Imre M, Dogaru TM. Metabolic Effects of Two Different Doses of Venlafaxine Therapy on Rats. Acta Medica Marisiensis. 2015;61:196–9.10.1515/amma-2015-0049Search in Google Scholar

45. Gadde KM, Parker CB, Maner LG, Wagner HR, Logue EJ, Drezner MK, et al. Bupropion for weight loss: an investigation of efficacy and tolerability in overweight and obese women. Obes. Res. 2001;9:544–51.10.1038/oby.2001.711155783511557835Open DOISearch in Google Scholar

46. Gadde KM, Yonish GM, Foust MS, Wagner HR. Combination therapy of zonisamide and bupropion for weight reduction in obese women: a preliminary, randomized, open-label study. J. Clin. Psychiatry. 2007;68:1226–9.10.4088/JCP.v68n0809Open DOISearch in Google Scholar

47. Plodkowski RA, Nguyen Q, Sundaram U, Nguyen L, Chau DL, St Jeor S. Bupropion and naltrexone: a review of their use individually and in combination for the treatment of obesity. Expert Opin. Pharmacother. Taylor & Francis; 2009;10:1069–81.10.1517/14656560902775750Search in Google Scholar

48. Greenway FL, Dunayevich E, Tollefson G, Erickson J, Guttadauria M, Fujioka K, et al. Comparison of Combined Bupropion and Naltrexone Therapy for Obesity with Monotherapy and Placebo. J. Clin. Endocrinol. Metab. 2009;94:4898–906.10.1210/jc.2009-135019846734Open DOISearch in Google Scholar

49. Apovian CM, Aronne L, Rubino D, Still C, Wyatt H, Burns C, et al. A randomized, phase 3 trial of naltrexone SR/bupropion SR on weight and obesity-related risk factors (COR-II). Obesity. 2013;21:935–43.10.1002/oby.20309373993123408728Open DOISearch in Google Scholar

50. Guerdjikova AI, Walsh B, Shan K, Halseth AE, Dunayevich E, McElroy SL. Concurrent Improvement in Both Binge Eating and Depressive Symptoms with Naltrexone/Bupropion Therapy in Overweight or Obese Subjects with Major Depressive Disorder in an Open-Label, Uncontrolled Study. Adv. Ther. 2017;34:2307–15.10.1007/s12325-017-0613-9565671928918581Open DOISearch in Google Scholar

51. Mangoni AA, Lu TY-T, Kupa A, Easterbrook G. Profound weight loss associated with reboxetine use in a 44-year-old woman. Br J Clin Pharmacol. 602:218–20.Search in Google Scholar

52. Hasnain M, Vieweg WVR, Fredrickson SK, Beatty-Brooks M, Fernandez A, Pandurangi AK. Clinical monitoring and management of the metabolic syndrome in patients receiving atypical antipsychotic medications. Prim. Care Diabetes. 2009;3:5–15.10.1016/j.pcd.2008.10.00519083283Search in Google Scholar

53. Coccurello R, Moles A. Potential mechanisms of atypical antipsychotic-induced metabolic derangement: Clues for understanding obesity and novel drug design. Pharmacol. Ther. 2010;127:210–51.10.1016/j.pharmthera.2010.04.008Search in Google Scholar

54. Ghanizadeh A. A systematic review of reboxetine for treating patients with attention deficit hyperactivity disorder. Nord. J. Psychiatry. 2015;69:241–8.10.3109/08039488.2014.97297525415763Search in Google Scholar

55. Wofford MR, King DS, Harrell TK. Drug-Induced Metabolic Syndrome. J. Clin. Hypertens. 2006;8:114–9.10.1111/j.1524-6175.2006.04751.x810949916470080Open DOISearch in Google Scholar

56. Uguz F, Sahingoz M, Gungor B, Aksoy F, Askin R. Weight gain and associated factors in patients using newer antidepressant drugs. Gen. Hosp. Psychiatry. Elsevier; 2015;37:46–8.10.1016/j.genhosppsych.2014.10.011Search in Google Scholar

57. Demyttenaere K. Agomelatine: A narrative review. Eur. Neuropsychopharmacol. Elsevier; 2011;21:S703–9.10.1016/j.euroneuro.2011.07.004Open DOISearch in Google Scholar

58. Nowacka MM, Paul-Samojedny M, Bielecka AM, Obuchowicz E. Chronic social instability stress enhances vulnerability of BDNF response to LPS in the limbic structures of female rats: A protective role of antidepressants. Neurosci. Res. Elsevier; 2014;88:74–83.10.1016/j.neures.2014.08.008Open DOISearch in Google Scholar

59. McEwen BS, Chattarji S, Diamond DM, Jay TM, Reagan LP, Svenningsson P, et al. The neurobiological properties of tianeptine (Stablon): From monoamine hypothesis to glutamatergic modulation. Mol. Psychiatry. Nature Publishing Group; 2010;15:237–49.10.1038/mp.2009.80Search in Google Scholar

60. Kozumplik O, Uzun S. Metabolic syndrome in patients with depressive disorder-features of comorbidity. Psychiatr. Danub. 2011;23:84–8.Search in Google Scholar

61. Kahl KG, Schweiger U, Correll C, Müller C, Busch ML, Bauer M, et al. Depression, anxiety disorders, and metabolic syndrome in a population at risk for type 2 diabetes mellitus. Brain Behav. 2015;5:e00306.10.1002/brb3.306Search in Google Scholar

62. Mendelson SD. Depression, Metabolic Syndrome, and Heart Disease. Metab. Syndr. Psychiatr. Illn. Elsevier; 2008. p. 93–103.10.1016/B978-012374240-7.50008-5Search in Google Scholar

63. Gheshlagh RG, Parizad N, Sayehmiri K. The Relationship Between Depression and Metabolic Syndrome: Systematic Review and Meta-Analysis Study. 2016;18.10.5812/ircmj.26523Search in Google Scholar

64. Sun BK, Kim JH, Choi J-S, Hwang S-J, Sung J-H. Fluoxetine Decreases the Proliferation and Adipogenic Differentiation of Human Adipose-Derived Stem Cells. Int. J. Mol. Sci. Multidisciplinary Digital Publishing Institute (MDPI); 2015;16:16655–68.10.3390/ijms160716655Search in Google Scholar

65. Cloonan SM, Williams DC. The antidepressants maprotiline and fluoxetine induce Type II autophagic cell death in drug-resistant Burkitt’s lymphoma. Int. J. Cancer. 2011;128:1712–23.10.1002/ijc.25477Search in Google Scholar

66. Li H, Fong CC, Chen Y, Cai G, Yang M. Imipramine inhibits adipogenic differentiation in both 3T3-L1 preadipocytes and mouse marrow stromal cells. J Genet Genomics. Elsevier Limited and Science Press; 2012;39:173–80.10.1016/j.jgg.2012.03.003Search in Google Scholar

67. Lowell BB. PPAR??: An essential regulator of adipogenesis and modulator of fat cell function. Cell. 1999;99:239–42.10.1016/S0092-8674(00)81654-2Search in Google Scholar

68. Bertile F, Criscuolo F, Oudart H, Maho Y Le. Differences in the expression of lipolytic-related genes in rat white adipose tissues. Biocehmical Biophys. Res. Commun. 2003;307:540–6.10.1016/S0006-291X(03)01196-3Search in Google Scholar

69. Löffler D, Landgraf K, Körner A, Kratzsch J, Kirkby KC, Himmerich H. Modulation of triglyceride accumulation in adipocytes by psychopharmacological agents in vitro. J. Psychiatr. Res. 2016;72:37–42.10.1016/j.jpsychires.2015.10.008Search in Google Scholar

70. Stunes AK, Reseland JE, Hauso Ø, Kidd M, Tømmerås K, Waldum HL, et al. Adipocytes express a functional system for serotonin synthesis, reuptake and receptor activation. Diabetes, Obes. Metab. Blackwell Publishing Ltd; 2011;13:551–8.10.1111/j.1463-1326.2011.01378.xSearch in Google Scholar

71. Grès S, Canteiro S, Mercader J, Carpéné C. Oxidation of high doses of serotonin favors lipid accumulation in mouse and human fat cells. Mol. Nutr. Food Res. 2013;57:1089–99.10.1002/mnfr.201200681Search in Google Scholar

72. Grès S, Gomez-Zorita S, Gomez-Ruiz A, Carpéné C. 5-hydroxytryptamine actions in adipocytes: involvement of monoamine oxidase-dependent oxidation and subsequent PPARγ activation. J. Neural Transm. Springer Vienna; 2013;120:919–26.10.1007/s00702-012-0959-8Search in Google Scholar

73. Bába LI, Gáll Z, Bíró IL, Mezei T, Kun IZ, Kolcsár M. Chronic fluoxetine treatment induces lipid accumulation but does not alter the expression of Pref-1 in rat adipose tissue. Acta Pharm. 2018;68:109–15.10.2478/acph-2018-000929453913Search in Google Scholar

eISSN:
2537-5059
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Medicine, Clinical Medicine, Pharmacy