Open Access

Indoor and outdoor 222Rn and 220Rn and their progeny levels surrounding Bayan Obo mine, China


Cite

1. Yang, X., Michael, J., & Le Bas, M. J. (2004). Chemical compositions of carbonate minerals from Bayan Obo, Inner Mongolia, China: implications for petrogenesis. Lithos, 72, 97–116. DOI: 10.1016/j.lithos.2003.09.002.10.1016/j.lithos.2003.09.002Search in Google Scholar

2. Wang, X., Guo, C., & Bai, L. (2009). Radiothorium contamination tendency and control measure for Baotou steel factory tailing dam. Radiat. Prot., 29(4), 270–274. DOI: 10.1002/9780470611807.ch2. (in Chinese with English abstract).10.1002/9780470611807.ch2Search in Google Scholar

3. Li, R., Li, Q., & Chen, S. (2014). Distribution of radioactive thorium in surrounding soils of Bayan Obo mining area. J. Res. Environ. Sci., 27(1), 51–56. DOI: 10.13198j.issn1001-6929.2014.01.08. (in Chinese with English abstract).Search in Google Scholar

4. Li, B., Wang, N., Wan, J., Xiong, S., Liu, H., Li, S., & Zhao, R. (2016). In-situ gamma-ray survey of rare-earth tailings dams–A case study in Baotou and Bayan Obo Districts, China. J. Environ. Radioact., 151(Part 1), 304–310. DOI: 10.1016/j.jenvrad.2015.10.027.10.1016/j.jenvrad.2015.10.02726555365Search in Google Scholar

5. Chen, X., & Cheng, Y. (1998). Long-term monitoring of thorium inhaled by workers and assessment of thorium lung burden in China. Radiat. Prot. Dosim., 79, 91–93. DOI: 10.1093/oxfordjournals.rpd.a032475.10.1093/oxfordjournals.rpd.a032475Search in Google Scholar

6. Liu, Y., Liu, F., & Wang, C. (2010). Primary measure of equipment factor of 222Rn/220Rn indoor. Atomic Energy Science and Technology, 44(12), 1527–1531. (in Chinese with English abstract).Search in Google Scholar

7. Wang, C., Liu, F., & Liu, G. (2015). Influence of Bayan Obo ores on indoor 222Rn, 220Rn and γ radiation levels. Radiat. Prot., 35(5), 305–316.Search in Google Scholar

8. De With, G., Smetsers, R. C. G. M., & Slaper, H. (2018). Thoron exposure in Dutch dwellings – An overview. J. Environ. Radioact., 183, 73–81. DOI: 10.1016/j.jenvrad.2017.12.014.10.1016/j.jenvrad.2017.12.01429306710Search in Google Scholar

9. Ramachandan, T. V., & Sathish, L. A. (2011). Nationwide indoor 222Rn and 220Rn map for India: a review. J. Environ. Radioact., 102(11), 975–986. DOI: 10.1016/j.jenvrad.2011. 06.009.10.1016/j.jenvrad.2011.06.009Search in Google Scholar

10. Vuckovic, B., Gulan, L., & Milenkovic, B. (2016). Indoor radon and thoron concentrations in some towns of central and South Serbia. J. Environ. Radioact., 183(Part 3), 938–944. DOI: 10.1016/j.jenvman.2016.09.053.10.1016/j.jenvman.2016.09.05327681871Search in Google Scholar

11. Alharbi, S. H., & Akber, R. A. (2015). Radon and thoron concentrations in public workplaces in Brisbane, Australia. J. Environ. Radioact., 144, 69–76. DOI: 10.1016/j.jenvrad.2015.03.008.10.1016/j.jenvrad.2015.03.00825827573Search in Google Scholar

12. Wang, N., Peng, A., & Xiao, L. (2012). The level and distribution of 220Rn concentration in soil-gas in Guangdong Province, China. Radiat. Prot. Dosim., 152(1/3), 204–209. DOI: 10.1093/rpd/ncs223.10.1093/rpd/ncs22322923249Search in Google Scholar

13. He, Z., Xiao, D., & Lv, L. (2017). Controlling 212Bi to 212Pb activity concentration ratio in thoron chambers. J. Environ. Radioact., 178/179, 77–83. DOI: 10.1016/j.jenvrad.2017.07.011.10.1016/j.jenvrad.2017.07.01128797795Search in Google Scholar

14. Tracerlab. (2017). ERS-RDM-2S Monitor for the determination of the Radon/Thoron-Gas- & Progeny-concentration. Short-Version-2017/08. Koelm, Germany: Tracerlab GmbH.Search in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other