Open Access

Characterizing urban pollution variability in Central Poland using radon-222


Cite

1. Apte, J. S., Brauer, M., Cohen, A. J., Ezzati, M., & Pope III, C. A. (2018). Ambient PM2.5 reduces global and regional life expectancy. Environ. Sci. Technol. Lett., 5(9), 546–551.10.1021/acs.estlett.8b00360Search in Google Scholar

2. Lelieveld, J., Klingmuller, K., Pozzer, A., Pöschl, U., Fnais, M., Daiber, A., & Münzel, T. (2019). Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur. Heart J., 40(20), 1590–1596. https://doi.org/10.1093/eurheartj/ehz135.10.1093/eurheartj/ehz135Search in Google Scholar

3. Ayers, G. P., Bigg, E. K., Turvey, D. E., & Manton, M. J. (1982). Urban influence on condensation nuclei over a continent. Atmos. Environ., 16, 951–954.10.1016/0004-6981(82)90180-9Search in Google Scholar

4. Chambers, S. D., Guérette, E. -A., Monk, K., Griffiths, A. D., Zhang, Y., Duc, H., Cope, M., Emmerson, K. M., Chang, L. T., Silver, J. D., Utembe, S., Crawford, J., Williams, A. G., & Keywood, M. (2019a). Skill-testing chemical transport models across contrasting atmospheric mixing states using Radon-222. Atmosphere, 10(1), 25. https://doi.org/10.3390/atmos10010025.10.3390/atmos10010025Search in Google Scholar

5. Chambers, S. D., Podstawczyńska, A., Pawlak, W., Fortuniak, K., Wiliams, A. G., & Griffiths, A. D. (2019b). Characterising the state of the urban surface layer using radon-222. J. Geophys. Res. Atmos., 124(2), 770–788.10.1029/2018JD029507Search in Google Scholar

6. Chambers, S. D., Williams, A. G., Crawford, J., & Griffiths, A. D. (2015). On the use of radon for quantifying the effects of atmospheric stability on urban emissions. Atmos. Chem. Phys., 15, 1175–1190.10.5194/acp-15-1175-2015Search in Google Scholar

7. Kikaj, D., Vaupotič, J., & Chambers, S. D. (2019a). Identifying “persistent temperature inversion” events in a sub-Alpine Basin using Radon-222. Atmos. Meas. Tech., 12, 4455–4477. https://doi.org/10.5194/amt-12-4455-2019.10.5194/amt-12-4455-2019Search in Google Scholar

8. Kikaj, D., Chambers, S. D., & Vaupotič, J. (2019b). Radon-based atmospheric stability classification in contrasting sub-Alpine and sub-Mediterranean environments. J. Environ. Radioact., 203, 125–134. DOI: 10.1016/j.jenvrad.2019.03.010.10.1016/j.jenvrad.2019.03.010Search in Google Scholar

9. Moses, H., Stehney, A. F., & Lucas, H. J. (1960). The effect of meteorological variables upon the vertical and temporal distributions of atmospheric radon. J. Geophys. Res., 65, 1223–1238.10.1029/JZ065i004p01223Search in Google Scholar

10. Perrino, C., Pietrodangelo, A., & Febo, A. (2001). An atmospheric stability index based on radon progeny measurements for the evaluation of primary urban pollution. Atmos. Environ., 35, 5235–5244.10.1016/S1352-2310(01)00349-1Search in Google Scholar

11. Williams, A. G., Chambers, S. D., & Griffiths, A. D. (2013). Bulk mixing and decoupling of the nocturnal stable boundary layer characterized using a ubiquitous natural tracer. Bound. Layer Meteorol., 20(149), 381–402.10.1007/s10546-013-9849-3Search in Google Scholar

12. Williams, A. G., Chambers, S. D., Conen, F., Reimann, S., Hill, M., Griffiths, A. D., & Crawford, J. (2016). Radon as a tracer of atmospheric influences on traffic-related air pollution in a small inland city. Tellus B, 68, 30967. http://dx.doi.org/10.3402/tellusb.v68.30967.10.3402/tellusb.v68.30967Search in Google Scholar

13. Podstawczyńska, A., & Chambers, S. D. (2019). Improved method for characterising temporal variability in urban air quality Part I: Traffic emissions in Central Poland. Atmos. Environ., 219, 117038. https://doi.org/10.1016/j.atmosenv.2019.117038.10.1016/j.atmosenv.2019.117038Search in Google Scholar

14. Chambers, S. D., & Podstawczyńska, A. (2019). Improved method for characterising temporal variability in urban air quality Part II: particulate matter and precursors in central Poland. Atmos. Environ., 219, 117040. https://doi.org/10.1016/j.atmosenv.2019.117040.10.1016/j.atmosenv.2019.117040Search in Google Scholar

15. Grossi, C., Arnold, D., Adame, A. J., Lopez-Colo, L., Bolivar, J. P., de la Morena, B. A., & Vargas, A. (2012). Atmospheric 222Rn concentration and source term at El Arenosillo 100m meteorological tower in southwest, Spain. Radiat. Meas., 47, 149–162.10.1016/j.radmeas.2011.11.006Search in Google Scholar

16. Schmithüsen, D., Chambers, S. D., Fischer, B., Gilge, S., Hatakka, J., Kazan, V., Neubert, R., Paatero, J., Ramonet, M., Schlosser, C., Schmid, S., Vermeulen, A., & Levinet, I. (2017). A European wide 222Radon and 222Radon progeny comparison study. Atmos. Meas. Tech., 10, 1299–1312.10.5194/amt-10-1299-2017Search in Google Scholar

17. Williams, A. G., & Chambers, S. D. (2016). A history of radon measurements at Cape Grim. In N. Derek, P. B. Krummel & S. J. Cleland (Eds.), Baseline Atmospheric Program (Australia) History and Recollections (40th Anniversary Special ed.) (pp. 131–146). Australia: Burreau of Metrology/CSIRO Oceans and Atmosphere.Search in Google Scholar

18. Jędruszkiewicz, J., Czernecki, B., & Marosz, M. (2017). The variability of PM10 and PM2.5 concentrations in selected Polish agglomerations: the role of meteorological conditions, 2006–2016. Int. J. Environ. Health, 27, 441–462.10.1080/09603123.2017.137905528929790Search in Google Scholar

19. Draxler, R. R., & Rolph, G. D. (2003). Hybrid Single-Particle Lagrangian Integrated Trajectory (HY-SPLIT) Model. Retrieved July 31, 2019, from http://www.arl.noaa.gov/ready/hysplit4.html.Search in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other