Open Access

Studies on hydrometallurgical processes using nuclear techniques to be applied in copper industry. II. Application of radiotracers in copper leaching from flotation tailings


Cite

1. Kijewski, P., & Downorowicz, S. (1987). Odpady pofl otacyjne rudy miedzi jako potencjalna rezerwa surowcowa. Fizykochemiczne Problemy Mineralurgii, 19, 205-211.Search in Google Scholar

2. Kisielowska, E., Kasińska-Pilut, E., & Jaśkiewicz, J. (2007). Badania nad wpływem wybranych czynników fi zykochemicznych na efektywność procesu bioługowania odpadów pofl otacyjnych przy wykorzystaniu grzybów pleśniowych z gatunku Aspergillus niger. Górnictwo i Geoinżynieria, 31(3/1), 247-255.Search in Google Scholar

3. Kotarska, I. (2012). Odpady wydobywcze z górnictwa miedzi w Polsce - bilans, stan zagospodarowania i aspekty środowiskowe. Cuprum, 4(65), 45-63.Search in Google Scholar

4. Baran, A., Śliwka, M., & Lis, M. (2013). Selected properties of flotation tailings wastes deposited in the Gilów and Żelazny Most waste reservoirs regarding their potential environmental management. Arch. Min. Sci., 58(3), 969-978. DOI: 10.2478/amsc-2013-0068.10.2478/amsc-2013-0068Open DOISearch in Google Scholar

5. Łuszczkiewicz, A. (2000). Koncepcje wykorzystania odpadów fl otacyjnych z przeróbki rud miedzi w regionie legnicko-głogowskim. Inżynieria Mineralna, 1(1), 25-35.Search in Google Scholar

6. Ahmed, I. M., Nayl, A. A., & Daoud, J. A. (2016). Leaching and recovery of zinc and copper from brass slag by sulfuric acid. J. Saudi Chem. Soc., 20, S280-S285. DOI: 10.1016/j.jscs.2012.11.003.10.1016/j.jscs.2012.11.003Open DOISearch in Google Scholar

7. Urosevic, D. M., Dimitrijevic, M. D., & Jankovic, Z. D. (2015). Recovery of copper from copper slag and copper slag fl otation tailings by oxidative leaching. Physicochem. Probl. Miner. Pro., 51(1), 73-82. DOI: 10.5277/ppmp150107.10.5277/ppmp150107Open DOISearch in Google Scholar

8. Mohanty, U. S., Rintala, L., Halli, P., Taskinen, P., & Lundström, M. (2018). Hydrometallurgical approach for leaching of metals from copper rich side stream originating from base metal production. Metals, 8(1), 40(12 pp.). DOI: 10.3390/met8010040.10.3390/met8010040Search in Google Scholar

9. Antonijević, M. M., Dimitrijević, M. D., Stevanović, Z. O., Serbula, S. M., & Bogdanovic, G. D. (2008). Investigation of the possibility of copper recovery from the flotation tailings by acid leaching. J. Hazard. Mater., 158(1), 23-34. DOI: 10.1016/j.jhazmat.2008.01.063.10.1016/j.jhazmat.2008.01.06318329798Open DOISearch in Google Scholar

10. Barton, I., Ahn, J., & Lee, J. (2018). Mineralogical and metallurgical study of supergene ores of the mike Cu-Au (-Zn) deposit, Carlin trend, Nevada. Hydrometallurgy, 176, 176-191. DOI: 10.1016/j.hydromet.2018.01.022.10.1016/j.hydromet.2018.01.022Search in Google Scholar

11. Bulut, G. (2006). Recovery of copper and cobalt from ancient slag. Waste Manage. Res., 24(2), 118-124. DOI: 10.1177/0734242X06063350.10.1177/0734242X0606335016634226Open DOISearch in Google Scholar

12. Muravyov, M. I., Fomchenko, N. V., Usoltsev, A. V., Vasilyev, E. A., & Kondrat’eva, T. F. (2012). Leaching of copper and zinc from copper converter slag fl otation tailings using H2SO4 and biologically generated Fe2(SO4)3. Hydrometallurgy, 119/120, 40-46. DOI: 10.1016/j.hydromet.2012.03.001.10.1016/j.hydromet.2012.03.001Open DOISearch in Google Scholar

13. Wang, Y., Wen, S., Feng, Q., Xian, Y., & Liu, D. (2015). Leaching characteristics and mechanism of copper fl otation tailings in sulfuric acid solution. Russ. J. Non-Ferrous Metals, 56(2), 127-133. DOI: 10.3103/ S1067821215020170.10.3103/S1067821215020170Open DOISearch in Google Scholar

14. Astuti, W., Hirajima, T., Sasaki, K., & Okibea, N. (2016). Comparison of effectiveness of citric acid and other acids in leaching of low-grade Indonesian saprolitic ores. Miner. Eng., 85, 1-16. DOI: 10.1016/j. mineng.2015.10.001.10.1016/j.mineng.2015.10.001Open DOISearch in Google Scholar

15. Irannajad, M., Meshkini, M., & Azadmehr, A. R. (2013). Leaching of zinc from low grade oxide ore using organic acid. Physicochem. Probl. Miner. Pro., 49(2), 547-555. DOI: 10.5277/ppmp130215.10.5277/ppmp130215Open DOISearch in Google Scholar

16. Raza, N., Iqbal Zafar, Z., & Najam-ul-Haq (2013). An analytical model approach for the dissolution kinetics of magnesite ore using ascorbic acid as leaching agent. Int. J. Metals, Article ID 352496. DOI: 10.1155/2013/352496.10.1155/2013/352496Open DOISearch in Google Scholar

17. Dybczynski, R., Kulisa, K., Małusecka, M., Mandecka, M., Polkowska-Motrenko, H., Sterlinski, S., & Szopa, Z. (1990). A comprehensive study on the contents and leaching of trace elements from fl y-ash originating from Polish hard coal by NAA and AAS methods. Biol. Trace Elem. Res., 26(1), 335-345. DOI: 10.1007/BF02992688.10.1007/BF02992688Open DOISearch in Google Scholar

18. Zovko, E., & Pujić, Z. (1991). Application of neutron activation in the control of an ore disintegration process. J. Radioanal. Nucl. Chem., 154(6), 365-370. DOI: 10.1007/BF02169769.10.1007/BF02169769Open DOISearch in Google Scholar

19. Figueiredo, A. M. G., Avristcher, W., Masini, E. A., Diniz, S. C., & Abrão, A. (2002). Determination of lanthanides (La, Ce, Nd, Sm) and other elements in metallic gallium by instrumental neutron activation analysis. J. Alloy. Compd., 344(1/2), 36-39. DOI: 10.1016/S0925-8388(02)00301-8.10.1016/S0925-8388(02)00301-8Open DOISearch in Google Scholar

20. Vind, J., Alexandri, A., Vassiliadou, V., & Panias, D. (2018). Distribution of selected trace elements in the Bayer process. Metals, 8(5), 327(21 pp.). DOI: 10.3390/met8050327.10.3390/met8050327Open DOISearch in Google Scholar

21. Tsertsvadze, L. A., Dzadzamia, L. A., Petrashvili, Sh. G., Shutkerashvili, D. G., Kirkesali, E. I., Frontasyeva, M. V., Pavlov, S. S., & Gundorina, S. F. (2001). Development of the method of bacterial leaching of metals out of low-grade ores, rocks, and industrial wastes using neutron activation analysis. In K. Marinova, V. P. Perelygin, & P. Vater (Eds.), Radionuclides and heavy metals in environment (Vol. 5, pp. 245-257). (NATO Science Series, IV: Earth and Environmental Series). Dordrecht: Springer.10.1007/978-94-010-0993-5_35Search in Google Scholar

22. Iller, E., & Thýn, J. (1994). Metody radioznacznikowe w praktyce przemysłowej. Warszawa: WNT.Search in Google Scholar

23. Smoliński, T., Rogowski, M., Brykała, M., Pyszynska, M., & Chmielewski, A. G. (2018). Studies on hydrometallurgical processes using nuclear techniques to be applied in copper industry. I. Application of 64Cu radiotracer for investigation of copper ore leaching. Nukleonika, 63(4), 123-129. DOI: 10.2478/nuka-2018-0015.10.2478/nuka-2018-0015Open DOISearch in Google Scholar

24. Bujdoso, E., Feher, I., & Kardos, G. (1973). Activation and decay tables of radioisotopes. Amsterdam, New York: Elsevier.Search in Google Scholar

25. Jaroszewicz, J., Marcinkowska, Z., & Pytel, K. (2014). Production of fi ssion product 99Mo using high-enriched uranium plates in Polish nuclear research reactor MARIA: Technology and neutronic analysis. Nukleonika, 59(2), 43-52. DOI: 10.2478/nuka-2014-0009.10.2478/nuka-2014-0009Open DOISearch in Google Scholar

26. Chmielewski, T. (2016). Hydrometalurgia w odzyskiwaniu metali z koncentratów KGHM. In 4 Konferencja międzynarodowa - Metale towarzyszące w przemyśle metali nieżelaznych pt. „Metale towarzyszące kluczem do efektywnego wykorzystania zasobów w gospodarce cyrkulacyjnej”, 15-17.06.2016. Wrocław, Poland.Search in Google Scholar

27. Petryka, L., & Przewlocki, K. (1983). Radiotracer investigations of benefication copper ore in the industrial flotation process. Isotopenpraxis Isot. Environ. Health Stud., 19(10), 339-341. DOI: 10.1080/10256018308544932.10.1080/10256018308544932Search in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other