Open Access

Monte Carlo modelling of Th-Pb fuel assembly with californium neutron source


Cite

1. International Atomic Energy Agency. (2012). Role of thorium to supplement fuel cycles of future nuclear energy systems. Vienna: IAEA. (Nuclear Energy Series No. NF-T-2.4).Search in Google Scholar

2. Serfontein, D. E., & Mulder, E. J. (2014). Thorium-based fuel cycles: Reassessment of fuel economics and proliferation risk. Nucl. Eng. Des., 271, 106–113.10.1016/j.nucengdes.2013.11.018Search in Google Scholar

3. Vijayan, P., Shivakumar, V., Basu, S., & Sinha, R. (2017). Role of thorium in the Indian nuclear power programme. Prog. Nucl. Energy, 101(Pt A), 43–52.10.1016/j.pnucene.2017.02.005Search in Google Scholar

4. Abdel-Khalik, S. I., Haldy, P. A., & Kumar, A. (1984). Blanket design and calculated performance for the Lotus Fusion-Fission Hybrid Experimental Devices Test Facility. Fusion Sci. Technol., 2, 189–208.10.13182/FST84-A23093Open DOISearch in Google Scholar

5. Bhabha Atomic Research Centre. [access: 10.11.2017], www.barc.gov.in/randd/index.html.Search in Google Scholar

6. Oettingen, M., Cetnar, J., & Mirowski, T. (2015). The MCB code for numerical modeling of fourth generation nuclear reactors. Computer Sci., 16(4), 329–350.10.7494/csci.2015.16.4.329Search in Google Scholar

7. X-5 Monte Carlo Team. (2005). MCNP – A General Monte Carlo N-Particle Transport Code, Version 5. LANL. (Report LA-UR-03-1987).Search in Google Scholar

8. Cetnar, J. (2006). Solution of Bateman equations for nuclear transmutations. Ann. Nucl. Energy, 33, 640–645.10.1016/j.anucene.2006.02.004Search in Google Scholar

9. McConn, R. J. Jr, Gesh, C. J., Pagh, R. T., Rucker, R. A., & Williams III, R. G. (2011). Radiation portal monitor project, compendium of material composition data for radiation transport modeling. Revision 1. Pacific Northwest National Laboratory. (PIET-43741-TM-963, PNNL-15870).10.2172/1023125Search in Google Scholar

10. Morss, L. R., Edelstein, N. M., & Fuger, J. (2010). The chemistry of the actinide and transactinide elements (4th ed.). Dordrecht: Springer.10.1007/978-94-007-0211-0Search in Google Scholar

11. ACK Cyfronet AGH. [access: 10.11.2017], KDM. www.cyfronet.krakow.pl/portal/Prometheus.Search in Google Scholar

12. Martin, R. C., Knauer, J. B., & Balo, P. A. (2000). Production, distribution and applications of californium-252 neutron sources. Appl. Radiat. Isot., 53, 785–792.10.1016/S0969-8043(00)00214-1Search in Google Scholar

13. Liu, Z., Yang, C., Yang, Y., Zheng, L., & Rong, L. (2018). Measurement and analysis of 232Th(n,2n)231Th reaction rate in the thorium oxide cylinder with a D-T neutron. Ann. Nucl. Energy, 111, 660–665.10.1016/j.anucene.2017.06.041Search in Google Scholar

14. Mohapatra, D. K., Singh, S. S., Riyas, A., & Mohanakrishnan, P. (2013). Physics aspects of metal fuelled fast reactors with thorium blanket. Nucl. Eng. Des., 265, 1232–1237.10.1016/j.nucengdes.2013.09.002Search in Google Scholar

15. Kooyman, T., & Buiron, L. (2016). Neutronic and fuel cycle comparison of uranium and thorium as matrix for minor actinides bearing-blankets. Ann. Nucl. Energy, 92, 61–71.10.1016/j.anucene.2016.01.020Open DOISearch in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other