Open Access

Studies on magnetron-sputtered zirconium-silicide coatings deposited on zirconium alloy for the enhancement of their high-temperature oxidation resistance


Cite

1. IAEA. (2017). Nuclear technology review 2017. Vienna: International Atomic Energy Agency. (IAEA/NTR/2017).Search in Google Scholar

2. Pioro, I. (2016). Handbook on generation IV nuclear reactors. Waltham, MA: Elsevier Ltd.10.1115/1.4035327Search in Google Scholar

3. Terrani, K. T., Kiggans, J. O., Silva, C. M., Shih, D., Katoh, Y., & Snead, L. L. (2015). Progress on matrix SiC processing and properties for fully ceramic microencapsulated fuel form. J. Nucl. Mater., 457, 9–17. DOI: 10.1016/j.jnucmat.2014.10.034.10.1016/j.jnucmat.2014.10.034Open DOISearch in Google Scholar

4. IAEA. (2014). Accident tolerant fuel concepts. Proceeding of the technical meeting held at the Oak Ridge National Laboratories, USA, 1316 October 2014. Vienna: International Atomic Energy Agency. (IAEA-TECDOC-1797).Search in Google Scholar

5. Zinkle, S. J., Terrani, K. A., Gehin, J. C., Ott, L. J., & Snead, L. L. (2014). Accident tolerant fuels. A perspective. J. Nucl. Mater., 448, 374–379.10.1016/j.jnucmat.2013.12.005Search in Google Scholar

6. Morell, P. (2015). Phase 1A Final Report for the AREVA Team Enhanced Accident Tolerant Fuels Concepts. (Report DOE-AFS-0000567). DOI: 10.2172/1172983.10.2172/1172983Open DOISearch in Google Scholar

7. Pint, B. A., Terrani, K. A., Yamamoto, Y., & Snead, L. L. (2015). Material selection for accident tolerant fuel cladding. Metall. Mater. Trans. E, 2(3), 190–196. DOI: 10.1007/s40553-015-0056-7.10.1007/s40553-015-0056-7Open DOISearch in Google Scholar

8. Kim, H., Yang, J., Kim, W., & Koo, Y. (2016). Development status of accident-tolerant fuel for light water reactors in Korea. Nucl. Eng. Technol., 48, 1–15. https://doi.org/10.1016/j.net.2015.11.011.10.1016/j.net.2015.11.011Search in Google Scholar

9. Koo, Y., Yang, J., Park, J., Kim, K., Kim, H., Kim, D., Jung, Y., & Song, K. (2014). KAERI’s development of LWR accident-tolerant fuel. Nucl. Technol., 186(2), 295–304. http://dx.doi.org/10.13182/NT13-89.10.13182/NT13-89Open DOISearch in Google Scholar

10. Barrett, K., Bragg-Sitton, S., & Galicki, D. (2012). Advanced LWR nuclear fuel cladding system development trade-off study. Idaho National Laboratory. (INL/EXT-12-27090).Search in Google Scholar

11. Kurata, M. (2016). Research and development methodology for practical use of accident tolerant fuel in light water reactors. Nucl. Eng. Technol., 48, 26–32. DOI: https://doi.org/10.1016/j.net.2015.12.004.10.1016/j.net.2015.12.004Open DOISearch in Google Scholar

12. Yueh, K., & Terrani, K. A. (2014). Silicon carbide composite for light water reactor fuel assembly applications. J. Nucl. Mater., 448, 380–388. http://dx.doi.org/10.1016/j.jnucmat.2013.12.004.10.1016/j.jnucmat.2013.12.004Open DOISearch in Google Scholar

13. Idarraga-Trujillo, I., Le Flem, M., Brachet, J., Le Saux, M., Hamon, D., Mueller, S., Vanderberghe, V., Tupin, M., Papin, E., Monsierot, E., Billard, A., & Schuster, F. (2013). Assessment at CEA of coated nuclear fuel cladding for LWRs with increased margins in LOCA and beyond LOCA conditions. In Top Fuel 2013 September 15–19, 2013, Charlotte, NC, USA (pp. 860–867).Search in Google Scholar

14. Rebak, R., Terrani, K., Gassmann, W. P., & Williams, J. B. (2017). Improving nuclear Power plant safety with FeCrAl alloy fuel cladding. MRS Adv., 2(21/22), 1217–1224. https://doi.org/10.1557/adv.2017.5.10.1557/adv.2017.5Open DOISearch in Google Scholar

15. Terrani, A. K., Pint, B. A., Kim, Y. J., Unocic, K. A., Silva, C. M., Meyer III, H. M., & Rebak, R. B. (2016). Uniform corrosion of FeCrAl alloys in LWR coolant environments. J. Nucl. Mater., 479, 36–47. http://dx.doi.org/10.1016/j.jnucmat.2016.06.047.10.1016/j.jnucmat.2016.06.047Open DOISearch in Google Scholar

16. Yamamoto, Y., Pint, B. A., Terrani, K. A., Field, K. G., Yang, Y., & Snead, L. L. (2015). Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors. J. Nucl. Mater., 467, 703–716. http://dx.doi.org/10.1016/j.jnucmat.2015.10.019.10.1016/j.jnucmat.2015.10.019Open DOISearch in Google Scholar

17. Younker, M., & Fratoni, M. (2016) Neutronic evaluation of coating and cladding materials for accident tolerant fuels. Prog. Nucl. Energy, 88, 10–18. http://dx.doi.org/10.1016/j.pnucene.2015.11.006.10.1016/j.pnucene.2015.11.006Open DOISearch in Google Scholar

18. Tang, C., Stueber, M., Seifert, H. J., & Steinbruck, M. (2017). Protective coatings on zirconium-based alloys as accident-tolerant fuels (ATF) claddings. Corros. Rev., 35(3), 141–165. DOI: 10.1515/corrrev-2017-0010.10.1515/corrrev-2017-0010Open DOISearch in Google Scholar

19. Starosta, W., Barlak, M., Buczkowski, M., Kosińska, A., Sartowska, B., Waliś, L., & Janiak, T. (2015). Analiza mechanizmów tworzenia się oraz właściwości warstw tlenkowych powstających w wyniku rozkładu wody na powierzchni koszulek cyrkonowych oraz zbadanie wpływu modyfikacji struktury warstwy wierzchniej koszulek na procesy generacji wodoru. In J. Michalik, & R. Kocia (Eds.). Analiza procesów generacji wodoru w reaktorze jądrowym w trakcie normalnej eksploatacji i w sytuacjach awaryjnych z propozycjami działań na rzecz podniesienia poziomu bezpieczeństwa jądrowego (pp. 55–72). Warszawa: Institute of Nuclear Chemistry and Technology.Search in Google Scholar

20. Mariani, R., Medvedev, P., Porter, D. L., Hayes, S. L., Cole, J. I., & Bai, X. (2013). Novel accident-tolerant fuel meat and cladding. In Top Fuels, September 15–19, 2013, Charlotte, NC, USA (pp. 763–770).Search in Google Scholar

21. Yeom, H., Maier, B., Mariani, R., Bai, D., Fronek, S., Xu, P., & Sridharan, K. (2017). Magnetron sputter deposition of zirconium-silicide coating for mitigating high temperature oxidation of zirconium-alloy. Surf. Coat. Technol., 316, 30–38. http://dx.doi.org/10.1016/j.surfcoat.2017.03.018.10.1016/j.surfcoat.2017.03.018Open DOISearch in Google Scholar

22. Kaiser, A., Lobert, M., & Telle, R. (2008). Thermal stability of zircon (ZrSiO4). J. Eur. Ceram. Soc., 28, 2199–2211. DOI: 10.1016/j.jeurceramsoc.2007.12.040.10.1016/j.jeurceramsoc.2007.12.040Open DOISearch in Google Scholar

23. Lavrenko, V. A., Shemet, V. Zh., & Goncharuk, A. V. (1985). Studies on mechanism of high-temperature oxidation of molybdenium, tungsten and zirconium disilicides by differential thermal analysis. Thermochim. Acta, 93, 501–504. https://doi.org/10.1016/0040-6031(85)85126-1.10.1016/0040-6031(85)85126-1Open DOISearch in Google Scholar

24. Ueno, S., Ogji, T., & Lin, H. T. (2007). Corrosion and recession behavior of zircon in water vapor environment at high temperature. Corros. Sci., 49(3), 1162–1171. https://doi.org/10.1016/j.corsci.2006.08.013.10.1016/j.corsci.2006.08.013Open DOISearch in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other