Open Access

Simulation of start-up behaviour of a passive autocatalytic hydrogen recombiner

   | Jul 31, 2018

Cite

1. International Atomic Energy Agency. (2011). Mitigation of hydrogen hazards in severe accidents in nuclear power plants. Vienna: IAEA. (IAEA-TECDOC-1661).Search in Google Scholar

2. Rigas, F., & Amyotte, P. (2013). Hydrogen safety. New York: CRC Press, Taylor & Francis Group.10.1201/b12267Search in Google Scholar

3. Kanzleiter, T. (2009). OECD-NEA THAI Project. Quick look report. Hydrogen recombiner tests HR-1 to HR-5, HR-27 and HR-28. Eschborn, Germany: Becker Technologies GmbH. (Report no. 150 1326-HR-QLR-1).Search in Google Scholar

4. Areva Inc. (2011). Passive autocatalytic recombiner. Retrieved June 2017, from http://us.areva.com/EN/home-1495/passive-autocatalytic-recombiner-par.html.10.1155/2011/862812Search in Google Scholar

5. Simon, B., Reinecke, E.-A., Kubelt, C., & Allelein, H.-J. (2014). Start-up behaviour of a passive auto-catalytic recombiner under counter flow conditions: Results of a first orienting experimental study. Nucl. Eng. Des., 278, 317–322. DOI: 10.1016/j.nucengdes.2014.06.029.10.1016/j.nucengdes.2014.06.029Open DOISearch in Google Scholar

6. Liang, Z., Gardner, L., Clouther, T., & Thomas, B. (2016). Experimental study of effect of ambient flow condition on the performance of a passive autocatalytic recombiner. Nucl. Eng. Des., 301, 49–58. DOI: 10.1016/j.nucengdes.2016.03.005.10.1016/j.nucengdes.2016.03.005Open DOISearch in Google Scholar

7. Bachellerie, E., Arnould, F., Auglaire, M., de Boeck, B., Braillard, O., Eckardt, B., Ferroni, F., & Moffet, R. (2003). Generic approach for designing and implementing a passive autocatalytic recombiner PAR-system in nuclear power plant containments. Nucl. Eng. Des., 221, 151–165.10.1016/S0029-5493(02)00330-8Search in Google Scholar

8. Blanchat, T. K., & Malliakos, A. (1999). Analysis of hydrogen depletion using a scaled passive autocatalytic recombiner. Nucl. Eng. Des., 187, 229–239.10.1016/S0029-5493(98)00283-0Search in Google Scholar

9. Reinecke, E. -A., Tragsdorf, I. M., & Gierling, K. (2004). Studies on innovative hydrogen recombiners as safety devices in the containments of light water reactors. Nucl. Eng. Des., 230, 49–59. DOI: 10.1016/j.nucengdes.2003.10.009.10.1016/j.nucengdes.2003.10.009Open DOISearch in Google Scholar

10. Kelm, S., Schoppe, L., Dornseiffer, J., Hofmann, D., Reinecke, E.-A., Leistner, F., & Jühe, S. (2009). Ensuring the long-term functionality of passive auto-catalytic recombiners under operational containment atmosphere conditions – An interdisciplinary investigation. Nucl. Eng. Des., 239, 274–280. DOI: 10.1016/j.nucengdes.2008.10.029.10.1016/j.nucengdes.2008.10.029Search in Google Scholar

11. Kanzleiter, T. (2009). OECD-NEA THAI Project. Quick look report. Hydrogen recombiner tests HR-14 to HR-16. Eschborn, Germany: Becker Technologies GmbH. (Report no. 150 1326-HR-QLR-4).Search in Google Scholar

12. Orszulik, M., Fic, A., & Bury, T. (2015). CFD modeling of passive autocatalytic recombiners. Nukleonika, 60, 347–353. DOI: 10.1515/nuka-2015-0050.10.1515/nuka-2015-0050Open DOISearch in Google Scholar

13. Mimouni, S., Mechitoua, N., & Ouraou, M. (2011). CFD recombiner modelling and validation on the H2-PAR and Kali-H2 experiments. Sci. Technol. Nucl. Install., article ID 547514. DOI: 10.1155/2011/574514.10.1155/2011/574514Search in Google Scholar

14. Hoyes, J. R., & Ivings, M. J. (2016). CFD modelling of hydrogen stratification in enclosures: Model validation and application to PAR performance. Nucl. Eng. Des., 310, 142–153. DOI: 10.1016/j.nucengdes.2016.08.036.10.1016/j.nucengdes.2016.08.036Open DOISearch in Google Scholar

15. Kelm, S., Jahn, W., Reinecke, E.-A., & Allelein, H.-J. (2012). Passive auto-catalytic recombiner operation – validation of a CFD approach against OECD-THAI HR2 test. In Proceedings of OECD/NEA & IAEA Workshop on Experiments and CFD Codes Application to Nuclear Reactor Safety, 9–13 September 2012. Deajon, South Korea.Search in Google Scholar

16. Reinecke, E.-A., Kelm, S., Steffen, P.-M., Klauck, M., & Allelein, H.-J. (2016). Validation and application of the REKO-DIREKT code for the simulation of passive autocatalytic recombiners operational behaviour. Nucl. Technol., 196, 355–366. DOI: 10.13182/NT16-7.10.13182/NT16-7Open DOISearch in Google Scholar

17. Rożeń, A. (2015). Modelling of a passive autocatalytic hydrogen recombiner – a parametric study. Nukleonika, 60, 161–170. DOI: 10.1515/nuka-2015-0002.10.1515/nuka-2015-0002Open DOISearch in Google Scholar

18. Poling, B. E., Prausnitz, J. M., & O’Connell, J. P. (2001). The properties of gases and liquids. New York: McGraw-Hill.Search in Google Scholar

19. The European Stainless Steel Development Association. (2007). Stainless steel: Tables of technical properties. Materials and Application Series, 5. Luxemburg: Euro Inox.Search in Google Scholar

20. Boehm, J. (2007). Modellierung der Prozesse in katalytischen Rekombinatoren. Schriften des Forschungszentrums Jülich, Reihe Energietechnik, Band 61.Search in Google Scholar

21. Monarch Instrument. (2003). Table of emissivity. Retrieved June 2017, from https://monarchinstrument.com/pages/library.Search in Google Scholar

22. Warnatz, J., Allendorf, M. D., Kee, R. J., & Coltrin, M. E. (1994). A model of elementary chemistry and fluid mechanics in the combustion of hydrogen on platinum surfaces. Combust. Flame, 96, 393–406.10.1016/0010-2180(94)90107-4Open DOISearch in Google Scholar

23. Schefer, R. W., Cheng, R. K., Robben, F. A., & Brown, N. J. (1978). Catalyzed combustion of H2/air mixtures on a heated platinum plate. In The Western States Section/The Combustion Institute, Spring Meeting, 17–18 April 1978 (Paper No. 78–33). Boulder, CO, USA.Search in Google Scholar

24. Idelchik, I. E. (2008). Handbook of hydraulic resistance. New York: Begell House, Inc.Search in Google Scholar

25. Shah, R. K., & London, A. L. (1978). Laminar flow forced convection in ducts. In T. F. Irvine, J. P. Hartnett (Eds.), Advances in heat transfer. Suppl. 1. New York: Academic Press.10.1016/B978-0-12-020051-1.50006-1Search in Google Scholar

26. Zhi-qing, W. (1982). Study on correction coefficients of laminar and turbulence entrance region effect in round pipe. Appl. Math. Mech., 3, 433–446.10.1007/BF01897224Search in Google Scholar

27. ANSYS, Inc. (2016). ANSYS Fluent Theory Guide. Release 17.2. Canonsburg: ANSYS, Inc. Retrieved June 2017, from https://pl.scribd.com/document/342817281/ANSYS-Fluent-Theory-Guide.Search in Google Scholar

28. Dimotakis, P. E. (2000). The mixing transition in turbulent flows. J. Fluid Mech., 409, 69–98.10.1017/S0022112099007946Search in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other