Open Access

Evaluation of circulating endothelial cells in the rat after acute and fractionated whole-body gamma irradiation


Cite

1. Adams, M. J., Hardenbergh, P. H., Constine, L. S., & Lipshultz, S. E. (2003). Radiation-associated cardiovascular disease. Crit. Rev. Oncol. Hematol., 45(1), 55-75. DOI: http://dx.doi.org/10.1016/S1040-8428(01)00227-X.10.1016/S1040-8428(01)00227-XSearch in Google Scholar

2. Shimizu, Y., Kodama, K., Nishi, N., Kasagi, F., Suyama, A., Soda, M., Grant, E. J., Sugiyama, H., Sakata, R., Moriwaki, H., Hayashi, M., Konda, M., & Shore, R. E. (2010). Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950-2003. BMJ, 340, b5349. Retrieved January 14, 2010, from PubMed database on the World Wide Web: http://www.pubmed.gov. DOI: 10.1136/bmj.b5349.10.1136/bmj.b5349280694020075151Search in Google Scholar

3. Little, M. P., Gola, A., & Tzoulaki, I. (2009). A model of cardiovascular disease giving a plausible mechanism for the effect of fractionated low-dose ionizing radiation exposure. PLoS Comput. Biol., 5(10), e1000539. Retrieved October 23, 2009, from PubMed database on the World Wide Web: http://www.pubmed.gov. DOI: 10.1371/journal.pcbi.1000539.10.1371/journal.pcbi.1000539275907719851450Search in Google Scholar

4. Halle, M., Gabrielsen, A., Paulsson-Berne, G., Gahm, C., Agardh, H. E., Farnebo, F., & Tornvall, P. (2010). Sustained inflammation due to nuclear factor-kappa b activation in irradiated human arteries. J. Am. Coll. Cardiol., 55(12), 1227-1236. DOI: 10.1016/j. jacc.2009.10.047.Search in Google Scholar

5. Boerma, M., & Hauer-Jensen, M. (2011). Preclinical research into basic mechanisms of radiation- -induced heart disease. Cardiol. Res. Pract. Retrieved October 4, 2010, from PubMed database on the World Wide Web: http://www.pubmed.gov. DOI: 10.4061/2011/858262.10.4061/2011/858262295291520953374Search in Google Scholar

6. Bentzen, S. M. (2006). Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat. Rev. Cancer, 6(9), 702-713. DOI: 10.1038/nrc1950.10.1038/nrc195016929324Search in Google Scholar

7. Sugihara, T., Hattori, Y., Yamamoto, Y., Qi, F., Ichikawa, R., Sato, A., Liu, M. Y., Abe, K., & Kanno, M. (1999). Preferential impairment of nitric oxide- -mediated endothelium-dependent relaxation in human cervical arteries after irradiation. Circulation, 100(6), 635-641. DOI: 10.1161/01.CIR.100.6.635.10.1161/01.CIR.100.6.63510441101Search in Google Scholar

8. On, Y. K., Kim, H. S., Kim, S. Y., Chae, I. H., Oh, B. H., Lee, M. M., Park, Y. B., Choi, Y. S., & Chung, M. H. (2001). Vitamin C prevents radiation-induced endothelium-dependent vasomotor dysfunction and de-endothelialization by inhibiting oxidative damage in the rat. Clin. Exp. Pharmacol. Physiol., 28(10), 816-821. DOI: 10.1046/j.1440-1681.2001.03528.x.10.1046/j.1440-1681.2001.03528.x11553021Search in Google Scholar

9. Qi, F., Sugihara, T., Hattori, Y., Yamamoto, Y., Kanno, M., & Abe, K. (1998). Functional and morphological damage of endothelium in rabbit ear artery following irradiation with cobalt60. Br. J. Pharmacol., 123(4), 653-660. DOI: 10.1038/sj.bjp.0701654.10.1038/sj.bjp.070165415652129517384Search in Google Scholar

10. Soloviev, A. I., Tishkin, S. M., Parshikov, A. V., Ivanova, I. V., Goncharov, E. V., & Gurney, A. M. (2003). Mechanisms of endothelial dysfunction after ionized radiation: selective impairment of the nitric oxide component of endothelium-dependent vasodilation. Br. J. Pharmacol., 138(5), 837-844. DOI: 10.1038/ sj.bjp.0705079.10.1038/sj.bjp.0705079157371112642385Search in Google Scholar

11. Robbins, M. E., Jaenke, R. S., Bywaters, T., Golding, S. J., Rezvani, M., Whitehouse, E., & Hopewell, J. W. (1993). Sequential evaluation of radiation-induced glomerular ultrastructural changes in the pig kidney. Radiat. Res., 135(3), 351-364.10.2307/3578875Search in Google Scholar

12. Narayan, K., Withers, R., Garcia, C., Masoh, K., & Kumar, S. (1994). Guinea pig spinal cord as a model for the study of late radiation injury and repair. Int. J. Oncol., 4(4), 809-814. DOI: 10.3892/ijo.4.4.809.10.3892/ijo.4.4.809Search in Google Scholar

13. Ward, H. E., Kemsley, L., Davies, L., Holecek, M., & Berend, N. (1993). The pulmonary response to sublethal thoracic irradiation in the rat. Radiat. Res., 136(1), 15-21.10.2307/3578634Search in Google Scholar

14. Panes, J., Anderson, D. C., Miyasaka, M., & Granger, D. N. (1995). Role of leukocyte-endothelial cell adhesion in radiation induced microvascular dysfunction in rats. Gastroenterology, 108(6), 1761-1769.10.1016/0016-5085(95)90138-8Search in Google Scholar

15. Kimura, H., Wu, N. Z., Dodge, R., Spencer, D. P., Klitzman, B. M., McIntyre, T. M., & Dewhirst, M. W. (1995). Inhibition of radiation-induced upregulation of leukocyte adhesion to endothelial cells with the platelet-activating factor inhibitor, BN52021. Int. J. Radiat. Oncol. Biol. Phys., 33(3), 627-633. DOI: http://dx.doi.org/10.1016/0360-3016(95)00205-D.10.1016/0360-3016(95)00205-DSearch in Google Scholar

16. Verheji, M., Dewit, L. G., Boomgaard, M. N., Brinkman, H. J., & Mourik, J. A. (1994). Ionizing radiation enhances platelet adhesion to the extracellular matrix of human endothelial cells by an increase in the release of von Willebrand factor. Radiat. Res., 137(2), 202-207.10.2307/3578813Search in Google Scholar

17. Law, M. P. (1981). Radiation induced vascular injury and its relation to late effects in normal tissues. Adv. Radiat. Biol., 9, 37-73.10.1016/B978-0-12-035409-2.50007-2Search in Google Scholar

18. Woywodt, A., Blann, A. D., Kirsch, T., Erdbruegger, U., Banzet, N., Haubitz, M., & Dignat-George, F. (2006). Isolation and enumeration of circulating endothelial cells by immunomagnetic isolation: proposal of a definition and a consensus protocol. J. Thromb. Haemost., 4(3), 671-677. DOI: 10.1111/j.1538-7836.2006.01794.x.10.1111/j.1538-7836.2006.01794.x16460450Search in Google Scholar

19. Goon, P. K., Lip, G. Y., Boos, C. J., Stonelake, P. S., & Blann, A. D. (2006). Circulating endothelial cells, endothelial progenitor cells, and endothelial microparticles in cancer. Neoplasia, 8(2), 79-88. DOI: 10.1593/neo.05592.10.1593/neo.05592157851316611400Search in Google Scholar

20. Mancuso, P., Peccatori, F., Rocca, A., Calleri, A., Antoniotti, P., Rabascio, C., Saronni, L., Zorzino, L., Sandri, M. T., Zubani, A., & Bertolini, F. (2008). Circulating endothelial cell number and viability are reduced by exposure to high altitude. Endothelium, 15(1), 53-58. DOI: 10.1080/10623320802092344.10.1080/1062332080209234418568945Search in Google Scholar

21. Woywodt, A., Scheer, J., Hambach, L., Buchholz, S., Ganser, A., Haller, H., Hertenstein, B., & Haubitz, M. (2004). Circulating endothelial cells as a marker of endothelial damage in allogenic hematopoietic stem cell transplantation. Blood, 103(9), 3603-3605. DOI: 10.1182/blood-2003-10-3479.10.1182/blood-2003-10-347914715625Search in Google Scholar

22. Zeng, L., Yan, Z., Wang, L., Du, B., Pan, X., & Xu, K. (2008). Irradiation is an early determinant of endothelial injury during hematopoietic stem cell transplantation. Transplant. Proc., 40(8), 2661-2664. DOI: 10.1016/j.transproceed.2008.08.062.10.1016/j.transproceed.2008.08.062Search in Google Scholar

23. Al-Massarani, G., & Najjar, F. (2013). Does occupational exposure to low ionizing radiation affect endothelium health? Nukleonika, 58(4), 527-531.Search in Google Scholar

24. Blann, A. D., Woywodt, A., Bertolini, F., Bull, T. M., Buyon, J. P., Clancy, R. M., Haubitz, M., Hebbel, R. P., Lip, G. Y., Mancuso, P., Sampol, J., Solovey, A., & Dignat-George, F. (2005). Circulating endothelial cells. Biomarker of vascular disease. Thromb. Haemost., 93(2), 228-235. DOI: http:/dx.doi.org/10.1160/TH04-09-0578.Search in Google Scholar

25. Menendez, J. C., Casanova, D., Amado, J. A., Salas, E., García-Unzueta, M. T., Fernandez, F., de la Lastra, L. P., & Berrazueta, J. R. (1998). Effects of radiation on endothelial function. Int. J. Radiat. Oncol. Biol. Phys., 41(4), 905-913. DOI: http://dx.doi.10.1016/S0360-3016(98)00112-6.10.1016/S0360-3016(98)00112-6Search in Google Scholar

26. Burger, D., & Touyz, R. M. (2012). Cellular biomarkers of endothelial health: microparticles, endothelial progenitor cells, and circulating endothelial cells. J. Am. Soc. Hypertens., 6(2), 85-99. DOI: 10.1016/j. jash.2011.11.003.Search in Google Scholar

27. Erdbruegger, U., Haubitz, M., & Woywodt, A. (2006). Circulating endothelial cells: A novel marker of endothelial damage. Clin. Chim. Acta, 373(1/2), 17-26.10.1016/j.cca.2006.05.016Search in Google Scholar

28. Garbuzova-Davis, S., Woods III, R. L., Louis, M. K., Zesiewicz, T. A., Kuzmin-Nichols, N., Sullivan, K. L., Miller, A. M., Hernandez-Ontiveros, D. G., & Sanberg, P. R. (2010). Reduction of circulating endothelial cells in peripheral blood of ALS patients. Plos ONE. 5(5), e10614. Retrieved May 12, 2010, from PubMed database on the World Wide Web: http://www.pubmed.gov. DOI: 10.1371/journal.pone.0010614.10.1371/journal.pone.0010614Search in Google Scholar

29. Barres, B. A., Hart, I. K., Coles, H. S., Burne, J. F., Voyvodic, J. T., Richardson, W. D., & Raff, M. C. (1992). Cell death and the control of survival in the oligodendrocyte lineage. Cell, 70(1), 31-46.10.1016/0092-8674(92)90531-GSearch in Google Scholar

30. Wang, J., Kumar, S., van Agthoven, A., Kumar, P., Pye, D., & Hunter, R. D. (1995). Irradiation induces upregulation of E9 protein (CD105) in human vascular endothelial cells. Int. J. Cancer, 62(6), 791-796. DOI: 10.1002/ijc.2910620624.10.1002/ijc.29106206247558432Search in Google Scholar

31. Hirst, D. G., Denekamp, J., & Hobson, B. (1980). Proliferation studies of the endothelial and smooth muscle cells of the mouse mesentery after irradiation. Cell Tissue Kinet., 13(1), 91-104.10.1111/j.1365-2184.1980.tb00452.x7371061Search in Google Scholar

32. Delorme, B., Basire, A., Gentile, C., Sabatier, F., Monsonies, F., Desouches, C., Blot-Chabaud, M., Uzan, G., Sampol, J., & Dignat-George, F. (2005). Presence of endothelial progenitor cells, distinct from mature endothelial cells, within human CD146+ blood cells.Thromb. Haemost., 94(6), 1270-1279. DOI: http://dx.doi.org/10.1160/TH05-07-0499.10.1160/TH05-07-049916411405Search in Google Scholar

33. Pena, L. A., Fuks, Z., & Kolesnick, R. N. (2000). Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res., 60(2), 321-327.Search in Google Scholar

34. Li, Y., Chen, P., Haimovitz-Friedman, A., Reilly, R. M., & Wong, C. S. (2003). Endothelial apoptosis initiates acute blood-brain barrier disruption after ionizing radiation. Cancer Res., 63(18), 5950-5956.Search in Google Scholar

35. Bonnaud, S., Niaudet, C., Pottier, G., Gaugler, M. H., Millour, J., Barbet, J., Sabatier, L., & Paris, F. (2007). Sphingosine-1-phosphate protects proliferating endothelial cells from ceramide-induced apoptosis but not from DNA damage-induced mitotic death. Cancer Res., 67(4), 1803-1811. DOI: 10.1158/0008-5472. CAN-06-2802.Search in Google Scholar

36. Khodarev, N. N., Kataoka, Y., Murley, J. S., Weichselbaum, R. R., & Grdina, D. J. (2004). Interaction of amifostine and ionizing radiation on transcriptional patterns of apoptotic genes expressed in human microvascular endothelial cells (HMEC). Int. J. Radiat. Oncol. Biol. Phys., 60(2), 553-563. DOI: http://dx.doi.org/10.1016/j.ijrobp.2004.04.060.10.1016/j.ijrobp.2004.04.06015380592Search in Google Scholar

37. Nübel, T., Damrot, J., Roos, W. P., Kaina, B., & Fritz, G. (2006). Lovastatin protects human endothelial cells from killing by ionizing radiation without impairing induction and repair of DNA double-strand breaks. Clin. Cancer Res., 1(12), 933-939. DOI: 10.1158/1078-0432.CCR-05-1903.10.1158/1078-0432.CCR-05-190316467108Search in Google Scholar

38. Santana, P., Pena, L. A., Haimovitz-Friedman, A., Martin, S., Green, D., McLoughlin, M., Cordon- -Cardo, C., Schuchman, E. H., Fuks, Z., & Kolesnick, R. (1996). Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation- -induced apoptosis. Cell, 86(2), 189-199. DOI: http://dx.doi.org/10.1016/S0092-8674(00)80091-4.10.1016/S0092-8674(00)80091-4Search in Google Scholar

39. Paris, F., Fuks, Z., Kang, A., Capodieci, P., Juan, G., Ehleiter, D., Haimovitz-Friedman, A., Cordon-Cardo, C., & Kolesnick, R. (2001). Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science, 293(5528), 293-297. DOI:10.1126/science.1060191.10.1126/science.1060191Search in Google Scholar

40. Marathe, S., Schissel, S. L., Yellin, M. J., Beatini, N., Mintzer, R., Williams, K. J., & Tabas, I. (1998). Human vascular endothelial cells are a rich and regulatable source of secretory sphingomyelinase. Implications for early atherogenesis and ceramide mediated cell signaling. J. Biol. Chem., 273(7), 4081-4088. DOI: 10.1074/jbc.273.7.4081.10.1074/jbc.273.7.4081Search in Google Scholar

41. Farjado, L. F., Brown, J. M., & Glastein, E. (1976). Glomerular and juxtaglomerular lesions in radiation nephropathy. Radiat. Res., 68(1), 177-183. DOI: 10.2307/3574547.10.2307/3574547Search in Google Scholar

42. Baker, D. G., & Krochak, R. J. (1989). The response of the microvascular system to radiation: a review. Cancer Invest., 7(3), 287-294.10.3109/07357908909039849Search in Google Scholar

43. Eissner, G., Kohlhuber, F., Grell, M., Ueffing, M., Scheurich, P., Hieke, A., Multhoff, G., Bornkamm, G. W., & Holler, E. (1995). Critical involvement of transmembrane tumor necrosis factor-alpha in endothelial programmed cell death mediated by ionizing radiation and bacterial endotoxin. Blood, 86(11), 4184-4193.10.1182/blood.V86.11.4184.bloodjournal86114184Search in Google Scholar

44. Langley, R. E., Bump, E. A., Quartuccio, S. G., Medeiros, D., & Braunhut S. J. (1997). Radiation- -induced apoptosis in microvascular endothelial cells. Br. J. Cancer, 75(5), 666-672. DOI:10.1038/ bjc.1997.119.10.1038/bjc.1997.119Search in Google Scholar

45. Salovsky, P. T., & Shopova, V. L. (1992). Early biological effects of whole body irradiation on rat lungs. Radiat. Environ. Biophys., 31(4), 333-341. DOI: 10.1007/BF01210213.10.1007/BF01210213Search in Google Scholar

46. Savla, U., & Waters, C. M. (1998). Barrier function of airway epithelium: effects of radiation and protection by keratinocyte growth factor. Radiat. Res., 150(2), 195-203.10.2307/3579855Search in Google Scholar

47. Klein-Soyer, C., Beretz, A., Cazenave, J. P., Driot, F., & Maffrand, J. P. (1990). Behavior of confluent endothelial cells after irradiation. Modulation of wound repair by heparin and acidic fibroblast growth factor. Biol. Cell., 68(1/3), 231-238. DOI: 10.1016/0248-4900(90)90313-R.10.1016/0248-4900(90)90313-RSearch in Google Scholar

48. Zhou, M., Dong, Q., & Ts’ao, C. (1988). Susceptibility of irradiated bovine aortic endothelial cells to injury. Am. J. Pathol., 133(2), 277-284.Search in Google Scholar

49. Luckey, T. D. (2008). The health effects of low-dose ionizing radiation. J. Am. Phys. Surg., 13(2), 39-42.Search in Google Scholar

50. Suzuki, K., & Yamashita, S. (2012). Low-dose radiation exposure and carcinogenesis. Jpn. J. Clin. Oncol., 42(7), 563-568. DOI: 10.1093/jjco/hys078.10.1093/jjco/hys07822641644Search in Google Scholar

51. Ahmad, M., Khurana, N. R., & Jaberi, J. E. (2007). Ionizing radiation decreases capillary-like structure formation by endothelial cells in vitro. Microvasc. Res., 73(1), 14-19. DOI: 10.1016/j.mvr.2006.08.005.10.1016/j.mvr.2006.08.00517028041Search in Google Scholar

52. Salloum, R. M., Jaskowiak, N. T., Mauceri, H. J., Seetharam, S., Beckett, M. A., Koons, A. M., Hari, D. M., Gupta, V. K., Reimer, C., Kalluri, R., Posner, M. C., Hellman, S., Kufe, D. W., & Weichselbaum, R. R. (2000). NM-3, an isocoumarin, increases the antitumor effects of radiotherapy without toxicity. Cancer Res., 60(24), 6958-6963.Search in Google Scholar

53. Abdollahi, A., Lipson, K. E., Weber, K. J., Hahnfeldt, P., Hlatky, L., Debus, J., Howlett, A. R., & Huber, P. (2003). SU5416 and SU6668 decrease angiogenic effects of radiation-induced factor productions by tumour cells and amplify the direct anti-endothelial action of radiation in vitro. Cancer Res., 63(13), 3755-3763.Search in Google Scholar

54. Krum, J. M., Kenyon, K. L., & Rosenstein, J. M. (1997). Expression of blood-brain barrier characteristics following neuronal loss and astroglial damage after administration of anti-Thy-1 immunotoxin. Exp. Neurol., 146(1), 33-45. 10.1006/exnr.1997.65289225736Search in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other