Open Access

Effect of AEA-SP Dosage Sequence on Air Entrainment in FA Concrete


Cite

Thomas M D A: “Optimizing the use of fly ash in concrete”. PCA IS548, Portland Cement Association, Skokie, IL, 2007, pp. 1-24.Search in Google Scholar

2. Du L, Folliard KJ: “Mechanisms of air entrainment in concrete”. Cement and Concrete Research, Vol. 35, No. 8, 2005, pp. 1463–1471.10.1016/j.cemconres.2004.07.026Search in Google Scholar

3. Pedersen K H, Jensen A D, Skjøth-Rasmussen M S et al.: “A review of the interference of carbon containing fly ash with air entrainment in concrete”. Progress in Energy and Combustion Science, Vol. 34, No. 2, 2008, pp. 135–154.10.1016/j.pecs.2007.03.002Open DOISearch in Google Scholar

4. Justnes H, Ng S: “Future Challenges for Concrete Admixtures (Part II)”. International Analytical Review Alitinform 2, No. 1(33), 2014, pp. 30–41.Search in Google Scholar

5. Justnes H, Ng S: “Concrete Admixtures – Interactions with Cement, Supplementary Cementing Materials and Fillers”. RILEM proceedings PRO, vol 93. RILEM Publications S.a.r.l, Bagneux, 2014, 138 pp.Search in Google Scholar

6. Jacobsen S, Nordal H; Rasol H, Lødewmel Ø, Tunstall L E, Scherer G W: “Foam index measurements on mixes of air entraining agents, superplasticizers and fly ash-cement-filler blends”. Proceedings, Materials, systems and structures in civil engineering 2016, Frost action in concrete. RILEM Publication S.a.r.l., France, 2016, pp. 61-70.Search in Google Scholar

7. Turowski M: “Air entrainment in fly ash concrete: effect of sequence of AEA-SP addition”. Master thesis, NTNU, Trondheim, Norway, 2016, 64 pp.Search in Google Scholar

8. Rixom M R, Mailvaganam N P: “Chemical admixtures for concrete”. Chapter 7, “Application of admixtures”, 3rd ed. E. & F. N. Spon, London, 1999, 147 pp.10.4324/9780203017241Search in Google Scholar

9. Puthipad N, Ouchi M, Attachaiyawuth A: “Effects of fly ash, mixing procedure and type of air-entraining agent on coalescence of entrained air bubbles in mortar of self-compacting concrete at fresh state”. Construction and Building Materials, 180, 2018, pp. 437–444.10.1016/j.conbuildmat.2018.04.138Search in Google Scholar

10. Eickschen E, Müller C: “Interactions of air-entraining agents and plasticizers in concrete”. Concrete Technology Reports 2010-2012, vol 11, Düsseldorf, Germany, 2013, pp. 41-58.Search in Google Scholar

11. Steinhoff J, Brameshuber W: “Target Oriented Production of Air-Entrained Fly Ash Concretes Usind Plasticising Admixtures. Results of laboratory tests”, (“Herstellung von flugaschehaltigen Luftporenbetonen mit verflüssigenden Betonzusatzmitteln. Ergebnisse von Laboruntersuchungen”). Beton 61, No 9, 2011, pp. 330-335. (In German).Search in Google Scholar

12. Vollset D: “Air in concrete. Production of frost resistant concrete”, (“Luft i betong. Produksjon av frostbestandigbetong”). Manuscript, BU Betongindustri, Rescon Mapei AS, 2010, 19 pp. (In Norwegian).Search in Google Scholar

13. Dittmar S, Fischer P, Gay M, Honert D: “Information document. Manufacture of LP-concrete. 2. Edition”, (“Informationsschrift. Herstellen von LP-Beton. 2. Ausgabe”). Manuscript, Deusche Bauchemie e.V., 2013, 20 pp. (In German).Search in Google Scholar

14. Shpak A, Jacobsen S: “Requirements and recommendations for frost durable concrete. Test methods. Overview of national and international standards, codes, committees, representative projects”. DaCS project reports, report No.06, SINTEF, Trondheim, Norway, 2019, 60 pp.Search in Google Scholar

15. Vollset D, Mortensvik Ø: “Air void structure of produced frost resistant concrete - an on site study”. Proceedings, XXI Nordic Concrete Research Symposium. Hämeenlinna, Finland, Vol. 43, 2011, pp. 149–152Search in Google Scholar

16. Tunstall L E, Scherer G W, Prud’homme R K: “Studying AEA interaction in cement systems using tensiometry”. Cement and Concrete Research, Vol. 92, 2017, pp. 29–36.10.1016/j.cemconres.2016.11.005Open DOISearch in Google Scholar

17. Jolicoeur C, To TC, Nguyen TS, Hill R, Pagé M: “Investigation of Physico-Chemical Aspects of Air Entrainment in Cementitious Systems”. ACI/VCA International Symposium on Recent Advances in Concrete Technology and Sustainability Issues, Hanoi, Vietnam, ACI Special Publication 217, American Concrete Insittute, Farmington Hills, Michigan, USA, 2003, 20 pp.Search in Google Scholar

18. Vimo O P: “Effect of adding sequence of air-entraining and water-reducing agents on macroporosity and air-void stability of concrete. AVA measurements”. Master thesis, NTNU, Trondheim, Norwasy, 2017, 74 pp.Search in Google Scholar

19. Eickschen E: “Reactivation potential of air-entraining concrete admixtures”. Concrete Technology Reports 2010-2012, Duesseldorf, Germany, 2011, pp. 19-39Search in Google Scholar

20. Spörel F, Uebachs S, Brameshuber W: “Investigations on the influence of fly ash on the formation and stability of artificially entrained air voids in concrete”. Materials and Structures, Vol. 42, No. 2, 2009, pp. 227–24010.1617/s11527-008-9380-zSearch in Google Scholar

21. Fonseca P C, Scherer G W: “An image analysis procedure to quantify the air void system of mortar and concrete”. Materials and Structures, Vol. 48, No. 10, 2015, pp. 3087–309810.1617/s11527-014-0381-9Search in Google Scholar

22. Siebel E: “Factors affecting the air-void parameters of concrete and its resistance to freezethaw with de-icing salt”. Beton 45(10), 1995, pp. 724–730Search in Google Scholar

23. Zhang D S: “Air entrainment in fresh concrete with PFA”. Cement and Concrete Composites, Vol. 18, No. 6, 1996, pp. 409–416.10.1016/S0958-9465(96)00033-9Open DOISearch in Google Scholar

24. Dodson V H: “Concrete admixtures”. Chapter 6, “Air entraining admixtures”. Book, Structural engineering series, Van Nostrand Reinhold, New York, USA, 1990, pp. 129-15810.1007/978-1-4757-4843-7_6Search in Google Scholar

25. Feneuil B, Pitois O, Roussel N: “Effect of surfactants on the yield stress of cement paste”. Cement and Concrete Research, Vol. 100, 2017, pp. 32-39.10.1016/j.cemconres.2017.04.015Open DOISearch in Google Scholar

26. Shpak A, Turowski M, Vimo O P, Stefan J: “Effect of AEA-SP dosage sequence on air content and air void structure in fresh and hardened fly ash mortar”. Proceedings, XXIII Nordic Concrete Research Symposium, Aalborg, Denmark, 2017, pp. 145-148.Search in Google Scholar

eISSN:
2545-2819
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Materials Sciences, Materials Processing