Open Access

A Linearized Model of FID Signal for Increasing Proton Magnetometer Precision


Cite

[1] Liu, H., Wang, H.P., Bin, J.C., Dong, H.B., Ge, J., Liu, Z., Yuan, Z.W., Zhu, J., Luan, X.Q. (2020). Efficient noise reduction for the free induction decay signal from a proton precession magnetometer with time-frequency peak filtering. Review of Scientific Instruments, 91 (4), 045101.10.1063/1.514471432357708Search in Google Scholar

[2] Duret, D., Bonzom, J., Brochier, M., Frances, M., Leger, J.M., Odru, R., Salvi, C., Thomas, T., Perret, A. (1995). Overhauser magnetometer for the danish oersted satellite. IEEE Transactions on Magnetics, 31 (6), 3197-3199.10.1109/20.490326Search in Google Scholar

[3] Sapunov, V., Rasson, J., Denisov, A., Saveliev, D., Kiselev, S., Denisova, O., Podmogov, Y., Khomutov, S. (2001). Theodolite-borne vector overhauser magnetometer: Dimover. Earth Planets & Space, 58 (6), 711-716.10.1186/BF03351972Search in Google Scholar

[4] Shim, J.H., Lee, S.J., Hwang, S., Yu, K., Kim, K. (2015). Proton spin-echo magnetometer: A novel approach for magnetic field measurement in residual field gradient. Metrologia, 52 (4). 496-501.10.1088/0026-1394/52/4/496Search in Google Scholar

[5] Acker, F.E. (1971). Calculation of the signal voltage induced in a toroidal proton-precession magnetometer sensor. IEEE Transactions on Geoscience Electronics, 9 (2), 98-103.10.1109/TGE.1971.271474Search in Google Scholar

[6] Ge, J., Dong, H., Liu, H., Yuan, Z., Dong, H., Zhao, Z., Liu, Y., Zhu, J., Zhang, H. (2016). Overhauser geomagnetic sensor based on the dynamic nuclear polarization effect for magnetic prospecting. Sensors, 16 (6), 806.10.3390/s16060806493423227258283Search in Google Scholar

[7] Tan, C., Dong, H., Ge, Z. (2010). Overhauser magnetometer excitation and receiving system design. Chinese Journal of Scientific Instrument, 31 (8), 1867-1872.Search in Google Scholar

[8] Liu, H., Dong, H., Liu, Z. Ge, J. (2017). Noise characterization for the FID signal from proton precession magnetometer. Journal of Instrumentation, 12 (7), 07019-07019.10.1088/1748-0221/12/07/P07019Search in Google Scholar

[9] Quinn, B.G. (1997). Estimation of frequency, amplitude, and phase from the DFT of a time series. IEEE Transactions on Signal Processing, 45 (3), 814-817.10.1109/78.558515Search in Google Scholar

[10] Candan, C. (2011). A method for fine resolution frequency estimation from three dft samples. IEEE Signal Processing Letters, 19 (6), 351-354.10.1109/LSP.2011.2136378Search in Google Scholar

[11] Yamada, T. (2013). High-accuracy estimations of frequency, amplitude, and phase with a modified DFT for asynchronous sampling. IEEE Transactions on Instrumentation and Measurement, 62 (6), 1428-1435.10.1109/TIM.2013.2239031Search in Google Scholar

[12] Zhan, L., Liu, Y., Culliss, J., Zhao, J., Liu, Y. (2015). Dynamic single-phase synchronized phase and frequency estimation at the distribution level. IEEE Transactions on Smart Grid, 6 (4), 2013-2022.10.1109/TSG.2015.2400973Search in Google Scholar

[13] Shen, T., Li, H., Zhang, Q., Li, M. (2017). A novel adaptive frequency estimation algorithm based on interpolation FFT and improved adaptive notch filter. Measurement Science Review, 17 (1), 48-52.10.1515/msr-2017-0006Search in Google Scholar

[14] Kirianaki, N.V., Yurish, S.Y., Shpak., N.O. (2001). Methods of dependent count for frequency measurements. Measurement, 29 (1), 31-50.10.1016/S0263-2241(00)00026-9Search in Google Scholar

[15] Wang, Z., Pan, L., Ji, G. (2013). Frequency measurement method utilizing discrete phase delay detection. Chinese Journal of Scientific Instrument, 34 (5), 994-1000.Search in Google Scholar

[16] Balázs, R, István, K, Tamás, D. (2016). Efficient implementation of least squares sine fitting algorithms. IEEE Transactions on Instrumentation and Measurement, 65 (12), 2717-2724.10.1109/TIM.2016.2600998Search in Google Scholar

[17] Händel, P. (2010). Amplitude estimation using IEEESTD-1057 three-parameter sine wave fit: Statistical distribution, bias and variance. Measurement, 43 (6), 766-770.10.1016/j.measurement.2010.02.007Search in Google Scholar

[18] Bilau, T.Z., Megyeri, T., Sárhegyi, A., Márkus, J., Kollár, I. (2004). Four-parameter fitting of sine wave testing result: Iteration and convergence. Computer Standards & Interfaces, 26 (1), 51-56.10.1016/S0920-5489(03)00062-XSearch in Google Scholar

[19] Xu, X., Wang, G., Wang, Y., Zhang, H., Li, X. (2009) Study on precise frequency measurement based on sound card. In 9th International Conference on Electronic Measurement & Instruments. IEEE, 445-448.Search in Google Scholar

[20] Wang, H., Dong, H., Li, Z. (2015). The study of FID signal detection technology of proton magnetometer based on prony method. Journal of Information & Computational Science, 9 (11), 3265-3272.Search in Google Scholar

[21] Wang, H., Dong, H., Hao, G. Luo, Y., Yu, Z. (2012). The study of fid signal processing algorithm of proton magnetometer based on SVD. International Journal of Digital Content Technology & Its Applications, 6 (18), 139-147.10.4156/jdcta.vol6.issue18.16Search in Google Scholar

[22] Wang, H., Dong, H., He, L., Meng, Q. (2012). The study of matrix mathematical model construction of PPM FID signal associate with FDM. Journal of Convergence Information Technology, 7 (16), 169-178.10.4156/jcit.vol7.issue16.20Search in Google Scholar

[23] Nakao, T., Furukawa, T., Suematsu, T., Utsumi, H., Kubota, H. (2014). Intensity estimation method of the FID signal based on the high-order Prony Method including evaluation used to the priori information in quantitative NMR. In IEEE International Symposium on Signal Processing and Information Technology, 37 (574), 000067-000072.10.1109/ISSPIT.2014.7300565Search in Google Scholar

[24] Dong, H., Liu, H., Ge, J., Yuan, Z., Zhao, Z. (2016). A high-precision frequency measurement algorithm for FID signal of proton magnetometer. IEEE Transactions on Instrumentation & Measurement, 65 (4), 898-904.10.1109/TIM.2016.2516299Search in Google Scholar

[25] Ge, J., Qiu, X., Dong, H., Luo, W., Liu, H., Yuan, Z., Zhu, J., Zhang, H. (2018). Short-time and high-precision measurement method for larmor frequency of marine overhauser sensor. IEEE Sensors Journal, 18 (4), 1442-1448.10.1109/JSEN.2017.2785381Search in Google Scholar

[26] Tan, C., Wang, J., Li. Z. (2019). A frequency measurement method based on optimal multi-average for increasing proton magnetometer measurement precision. Measurement, 135, 418-423.10.1016/j.measurement.2018.10.016Search in Google Scholar

[27] Tan, C., Yue, Z., Wang, J. (2019). Frequency measurement approach based on linear model for increasing low SNR sinusoidal signal frequency measurement precision. IET Science, Measurement & Technology, 13 (9), 1268-1276.10.1049/iet-smt.2018.5643Search in Google Scholar

[28] Tan, C., Wang, J., Li, Z. (2018). Structural parameters design of square coil for proton magnetic field sensor. Chinese Journal of Sensors and Actuators, 31 (11) 1679-1683.Search in Google Scholar

eISSN:
1335-8871
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing