Open Access

Characterization of Surface Micro-Roughness by Off-Specular Measurements of Polarized Optical Scattering


Cite

[1] Torrance, K., Sparrow, E. (1967). Theory for offspecular reflection from roughened surfaces. Journal of the Optical Society of America, 57, 1105-1114.10.1364/JOSA.57.001105Search in Google Scholar

[2] Videen, G., Hsu, J., Bickel, W., Wolfe, W. (1992). Polarized light scattered from rough surfaces. Journal of the Optical Society of America A, 9, 1111-1118.10.1364/JOSAA.9.001111Search in Google Scholar

[3] Germer, T. (1997). Angular dependence and polarization of out-of-plane optical scattering from particulate contamination, subsurface defects, and surface microroughness. Applied Optics, 36, 8798-8805.10.1364/AO.36.008798Search in Google Scholar

[4] Germer, T., Asmail, C., Scheer, B. (1997). Polarization of out-of-plane scattering from microrough silicon. Optics Letters, 22, 1284-1286.10.1364/OL.22.001284Search in Google Scholar

[5] Le Bosse, J., Hansali, G., Lopez, J., Dumas, J. (1999). Characterisation of surface roughness by laser light scattering: Diffusely scattered intensity measurement. Wear, 224, 236-244.10.1016/S0043-1648(98)00333-0Search in Google Scholar

[6] Tay, C., Quan, C. (2003). A parametric study on surface roughness evaluation of semi-conductor wafers by laser scattering. Optik, 114, 1-6.10.1078/0030-4026-00220Search in Google Scholar

[7] Germer, T., Asmail, C. (1999). Polarization of light scattered by microrough surfaces and subsurface defects. Journal of the Optical Society of America A, 16, 1326-1332.10.1364/JOSAA.16.001326Search in Google Scholar

[8] Jacques, S., Roman, J., Lee, K. (2000). Imaging superficial tissues with polarized light. Lasers in Surgery and Medicine, 26, 119-129.10.1002/(SICI)1096-9101(2000)26:2<119::AID-LSM3>3.0.CO;2-YSearch in Google Scholar

[9] Ghassemi, P., Lemaillet, P., Ramella-Roman, J., Shupp, J., Venna, S., Boisvert, M., Flanagan, K., Jordan, M., Germer, T. (2012). Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis. Journal of Biomedical Optics, 17, 076014.10.1117/1.JBO.17.7.076014Search in Google Scholar

[10] Torrance, K., Sparrow, E., Birkebak, R. (1966). Polarization, directional distribution, and off-specular peak phenomena in light reflected from roughened Surfaces. Journal of the Optical Society of America, 56, 916-925.10.1364/JOSA.56.000916Search in Google Scholar

[11] Bahar, E., Shi, X. (1998). The scattering and depolarization of electromagnetic waves by random rough surfaces with different scales of roughness: New full wave solutions. International Journal of Remote Sensing, 19, 2171-2185.10.1080/014311698214947Search in Google Scholar

[12] Shen, Y., Zhu, Q., Zhang, Z. (2003). A scatterometer for measuring the bidirectional reflectance and transmittance of semiconductor wafers with rough surfaces. Review of Scientific Instruments, 74, 4885-4892.10.1063/1.1614853Search in Google Scholar

[13] Renhorn, I., Boreman, G. (2008). Analytical fitting model for rough-surface BRDF. Optics Express, 16, 12892-12898.10.1364/OE.16.012892Search in Google Scholar

[14] Hyde IV, M., Schmidt, J., Havrilla, M. (2009). A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces. Optics Express, 17, 22138-22153.10.1364/OE.17.02213819997460Search in Google Scholar

[15] Liu, C., Fu, W. (2009). Polarized angular dependence of out-of-plane light-scattering measurements for nanoparticles on wafer. Optics Communications, 282, 2097-2103.10.1016/j.optcom.2009.02.021Search in Google Scholar

[16] Ren, J., Zhao, J. (2010). Measurement of a bidirectional reflectance distribution and system achievement based on a hemi-parabolic mirror. Optics Letters, 35, 1458-1460.10.1364/OL.35.00145820436602Search in Google Scholar

[17] Liu, C., Liu, T., Fu, W. (2010). Out-of-plane ellipsometry measurements of nanoparticles on surfaces for thin film coated wafer inspection. Optics & Laser Technology, 42, 902-910.10.1016/j.optlastec.2010.01.007Search in Google Scholar

[18] Jin, L., Kasahara, M., Gelloz, B., Takizawa, K. (2010). Polarization properties of scattered light from macrorough surfaces. Optics Letters, 35, 595-597.10.1364/OL.35.00059520160829Search in Google Scholar

[19] Renhorn, I., Hallberg, T., Bergstrom, D., Boreman, G. (2011). Four-parameter model for polarization-resolved rough-surface BRDF. Optics Express, 19, 1027-1036.10.1364/OE.19.00102721263641Search in Google Scholar

[20] Jin, L., Yamaguchi, K., Watanabe, M., Hira, S., Kondoh, E., Gelloz, B. (2015). Polarization characteristics of scattered light from macroscopically rough surfaces. Optical Review, 22, 511-520.10.1007/s10043-015-0117-2Search in Google Scholar

[21] Liu, L., Li, X., Nonaka, K. (2015). Light depolarization in off-specular reflection on submicro rough metal surfaces with imperfectly random roughness. Review of Scientific Instruments, 86, 023107.10.1063/1.490817225725823Search in Google Scholar

[22] Collier, C., Hesse, E., Taylor, L., Ulanowski, Z., Penttilä, A., Nousiainen, T. (2016). Effects of surface roughness with two scales on light scattering by hexagonal ice crystals large compared to the wavelength: DDA results. Journal of Quantitative Spectroscopy & Radiative Transfer, 182, 225-239.10.1016/j.jqsrt.2016.06.007Search in Google Scholar

[23] Doronin, A., Tchvialeva, L., Markhvida, I., Lee, T., Meglinski, I. (2016). Backscattering of linearly polarized light from turbid tissue-like scattering medium with rough surface. Journal of Biomedical Optics, 21, 071117.10.1117/1.JBO.21.7.07111727401802Search in Google Scholar

[24] Grynko, Y., Shkuratov, Y., Förstner, J. (2016). Light scattering by irregular particles much larger than the wavelength with wavelength-scale surface roughness. Optics Letters, 41, 3491-3494.10.1364/OL.41.00349127472601Search in Google Scholar

[25] Azzam, R. (2017). Ellipsometry of single-layer antireflection coatings on transparent substrates. Applied Surface Science, 421, 271-275.10.1016/j.apsusc.2016.10.184Search in Google Scholar

[26] Fujiwara, H., Fujimoto, S., Tamakoshi, M., Kato, M., Kadowakia, H., Miyadera, T., Tampo, H., Chikamatsu, M., Shibata, H. (2017). Determination and interpretation of the optical constants for solar cell materials. Applied Surface Science, 421, 276-282.10.1016/j.apsusc.2016.09.113Search in Google Scholar

[27] Camargo, A., Fellows, C., Lemos, M., Mello, M., Silva, L., Huguenin J. (2019). Roughness measurement of oriented surface by depolarization of scattered light. Optics and Lasers in Engineering, 112, 87-92.10.1016/j.optlaseng.2018.09.004Search in Google Scholar

[28] Meireles, J., Silva, L., Caetano, D., Huguenin, J. (2012). Effect of metallic surface roughness on the speckle pattern formation at diffraction plane. Optics and Lasers in Engineering, 50, 1731-1734.10.1016/j.optlaseng.2012.07.009Search in Google Scholar

[29] Fuh, Y., Hsu, K., Fan, J. (2012). Roughness measurement of metals using a modified binary speckle image and adaptive optics. Optics and Lasers in Engineering, 50, 312-316.10.1016/j.optlaseng.2011.11.003Search in Google Scholar

[30] Gao, Z., Zhao, X. (2012). Roughness measurement of moving weak-scattering surface by dynamic speckle image. Optics and Lasers in Engineering, 50, 668-677.10.1016/j.optlaseng.2011.11.014Search in Google Scholar

[31] Kim, B., Seo, J. (2015). Measurement of surface roughness of plasma-deposited films using laser speckles. Applied Surface Science, 359, 204-208.10.1016/j.apsusc.2015.10.070Search in Google Scholar

[32] Reis, R., Rabal, H., Braga, R. (2016). Light intensity independence during dynamic laser speckle analysis. Optics Communications, 366, 185-193.10.1016/j.optcom.2015.12.062Search in Google Scholar

[33] Cariñe, J., Guzmáncd, R., Torres-Ruiz, F. (2016). Algorithm for dynamic speckle pattern processing. Optics and Lasers in Engineering, 82, 56-61.10.1016/j.optlaseng.2016.02.001Search in Google Scholar

[34] Ansari, M., Nirala, A. (2016). Biospeckle numerical assessment followed by speckle quality tests. Optik, 127, 5825-5833.10.1016/j.ijleo.2016.04.010Search in Google Scholar

[35] Molaei, S. (2016). The measurement of Young’s modulus of thin films using secondary laser speckle patterns. Measurement, 92, 28-33.10.1016/j.measurement.2016.05.094Search in Google Scholar

[36] Park, J., Yoon, S., Kwon, T., Park, K. (2017). Assessment of speckle-pattern quality in digital image correlation based on gray intensity and speckle morphology. Optics and Lasers in Engineering, 91, 62-72.10.1016/j.optlaseng.2016.11.001Search in Google Scholar

[37] Palik, E. (1985). Handbook of Optical Constants of Solids. Academic Press.Search in Google Scholar

eISSN:
1335-8871
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing