Open Access

Identification of Microrecording Artifacts with Wavelet Analysis and Convolutional Neural Network: An Image Recognition Approach


Cite

[1] Bouton, C. (2017). Cracking the neural code, treating paralysis and the future of bioelectronic medicine. Journal of Internal Medicine, 282 (1), 37-45.10.1111/joim.1261028419590Search in Google Scholar

[2] Wichmann, T., DeLong, M.R. (2016). Deep brain stimulation for movement disorders of basal ganglia origin: Restoring function or functionality? Neurotherapeutics, 13 (2), 264-283.10.1007/s13311-016-0426-6482402626956115Search in Google Scholar

[3] Kocabicak, E., Alptekin, O., Ackermans, L., Kubben, P., Kuijf, M., Kurt, E., et al. (2015). Is there still need for microelectrode recording now the subthalamic nucleus can be well visualized with high field and ultrahigh MR imaging? Frontiers in Integrative Neuroscience, 9, 46.10.3389/fnint.2015.00046453122626321929Search in Google Scholar

[4] Abosch, A., Timmermann, L., Bartley, S., Rietkerk, H. G., Whiting, D., Connolly, P.J., et al. (2013). An international survey of deep brain stimulation procedural steps. Stereotactic and Functional Neurosurgery, 91 (1), 1-11.10.1159/00034320723154755Search in Google Scholar

[5] Bour, L.J., Contarino, M.F., Foncke, E.M.J., de Bie, R.M.A., van den Munckhof, P., Speelman, J.D., Schuurman, P.R. (2010). Long-term experience with intraoperative microrecording during DBS neurosurgery in STN and GPi. Acta Neurochirurgica, 152 (12), 2069–2077.10.1007/s00701-010-0835-y299115220949292Search in Google Scholar

[6] Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., et al. (2019). A guide to deep learning in healthcare. Nature Medicine, 25 (1), 24–29.10.1038/s41591-018-0316-z30617335Search in Google Scholar

[7] Al-Ajlan, A., El Allali, A. (2018). CNN-MGP: Convolutional neural networks for metagenomics gene prediction. Interdisciplinary Sciences: Computational Life Sciences, doi.org/10.1007/s12539-018-0313-4.Search in Google Scholar

[8] Bursa, M., Lhotska, L. (2017). The use of convolutional neural networks in biomedical data processing. In Information Technology in Bio- and Medical Informatics. Springer, 100-119.10.1007/978-3-319-64265-9_9Search in Google Scholar

[9] Kietzmann, T.C., McClure, P., Kriegeskorte, N. (2018). Deep neural networks in computational neuroscience. bioRxiv, doi.org/10.1101/133504.Search in Google Scholar

[10] Vásquez-Correa, J.C., Orozco-Arroyave, J.R., Nöth, E. (2017). Convolutional neural network to model articulation impairments in patients with Parkinson’s disease. In Interspeech 2017. ISCA, 314-318, DOI: 10.21437/Interspeech.2017-1078.10.21437/Interspeech.2017-1078Search in Google Scholar

[11] Cote-Allard, U., Fall, C.L., Drouin, A., Campeau- Lecours, A., Gosselin, C., Glette, K., et al. (2019). Deep learning for electromyographic hand gesture signal classification using transfer learning. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27 (4), 760-771.10.1109/TNSRE.2019.289626930714928Search in Google Scholar

[12] Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adeli, H. (2018). Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Computers in Biology and Medicine, 100, 270-278.10.1016/j.compbiomed.2017.09.01728974302Search in Google Scholar

[13] Al Rahhal, M.M., Bazi, Y., Al Zuair, M., Othman, E., BenJdira, B. (2018). Convolutional neural networks for electrocardiogram classification. Journal of Medical and Biological Engineering, 38 (6), 1014–1025.10.1007/s40846-018-0389-7Search in Google Scholar

[14] Yıldırım, Ö., Pławiak, P., Tan, R.-S., Acharya, U.R. (2018). Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Computers in Biology and Medicine, 102, 411–420.10.1016/j.compbiomed.2018.09.00930245122Search in Google Scholar

[15] Yildirim, Ö. (2018). A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification. Computers in Biology and Medicine, 96, 189–202.10.1016/j.compbiomed.2018.03.01629614430Search in Google Scholar

[16] The MathWorks, Inc. Deep Learning Toolbox: Create, analyze, and train deep learning networks. http://www.mathworks.com/products/deep-learning.html.Search in Google Scholar

[17] TensorFlow: An end-to-end open source machine learning platform. https://www.tensorflow.org/.Search in Google Scholar

[18] Keras Documentation: The Python deep learning library. https://keras.io/.Search in Google Scholar

[19] PyTorch: An open source machine learning framework that accelerates the path from research prototyping to production deployment. https://www.pytorch.org.Search in Google Scholar

[20] Caffe2: A new lightweight, modular, and scalable deep learning framework. http://caffe2.ai/.Search in Google Scholar

[21] Bakštein, E., Sieger, T., Wild, J., Novák, D., Schneider, J., Vostatek, P., et al. (2017). Methods for automatic detection of artifacts in microelectrode recordings. Journal of Neuroscience Methods, 290, 39–51.10.1016/j.jneumeth.2017.07.01228735876Search in Google Scholar

[22] Cagnan, H., Dolan, K., He, X., Contarino, M.F., Schuurman, R., van den Munckhof, P., et al. (2011). Automatic subthalamic nucleus detection from microelectrode recordings based on noise level and neuronal activity. Journal of Neural Engineering, 8 (4), 046006.10.1088/1741-2560/8/4/04600621628771Search in Google Scholar

[23] Falkenberg, J.H., McNames, J., Aboy, M., Burchiel, K.J. (2003). Segmentation of extracellular microelectrode recordings with equal power. In Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2475-2478.10.1109/IEMBS.2003.1280417Search in Google Scholar

[24] Aboy, M., Falkenberg, J.H. (2006). An automatic algorithm for stationary segmentation of extracellular microelectrode recordings. Medical & Biological Engineering & Computing, 44 (6), 511-515.10.1007/s11517-006-0052-216937202Search in Google Scholar

[25] Guarnizo, C., Orozco, A., Castellanos, G. (2008). Microelectrode signals segmentation using stationary wavelet transform. In 2008 International Conference on BioMedical Engineering and Informatics. IEEE, 450-454.10.1109/BMEI.2008.363Search in Google Scholar

[26] Bakstein, E., Schneider, J., Sieger, T., Novak, D., Wild, J., Jech, R. (2015). Supervised segmentation of microelectrode recording artifacts using power spectral density. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 1524-1527.10.1109/EMBC.2015.731866126736561Search in Google Scholar

[27] Weegink, K.J., Bellette, P.A., Varghese, J.J., Silburn, P.A., Meehan, P.A., Bradley, A.P. (2017). A parametric simulation of neuronal noise from microelectrode recordings. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25 (1), 4-13.10.1109/TNSRE.2016.257331827254870Search in Google Scholar

[28] Moran, A., Bar-Gad, I., Bergman, H., Israel, Z. (2006). Real-time refinement of subthalamic nucleus targeting using Bayesian decision-making on the root mean square measure. Movement Disorders, 21 (9), 1425-1431.10.1002/mds.2099516763982Search in Google Scholar

[29] Dolan, K., Martens, H.C.F., Schuurman, P.R., Bour, L.J. (2009). Automatic noise-level detection for extra- cellular micro-electrode recordings. Medical & Biological Engineering & Computing, 47 (7), 791-800.10.1007/s11517-009-0494-419468773Search in Google Scholar

[30] The MathWorks, Inc. Convolutional Neural Network. https://www.mathworks.com/solutions/deep-learning/convolutional-neural-network.html.Search in Google Scholar

[31] Klempir, O., Krupicka, R., Cejka, V., Jech, R. (2018). Microelectrode neuronal activity biomarker of the internal globus pallidus in dystonia correlates with long-term neuromodulation effects. In 2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom). IEEE, 1-6.10.1109/HealthCom.2018.8531122Search in Google Scholar

[32] Lilly, J.M. (2017). Element analysis: A wavelet-based method for analysing time-localized events in noisy time series. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 473 (2200), 20160776.Search in Google Scholar

[33] Gadhoumi, K., Lina, J.-M., Gotman, J. (2012). Discriminating preictal and interictal states in patients with temporal lobe epilepsy using wavelet analysis of intracerebral EEG. Clinical Neurophysiology, 123 (10), 1906-1916.10.1016/j.clinph.2012.03.001365493722480601Search in Google Scholar

[34] Gadhoumi, K., Lina, J.-M., Gotman, J. (2013). Seizure prediction in patients with mesial temporal lobe epilepsy using EEG measures of state similarity. Clinical Neurophysiology, 124 (9), 1745-1754.10.1016/j.clinph.2013.04.006449090623643577Search in Google Scholar

[35] Sharma, N., Jain, V., Mishra, A. (2018). An analysis of convolutional neural networks for image classification. Procedia Computer Science, 132, 377–384.10.1016/j.procs.2018.05.198Search in Google Scholar

[36] ImageNet.http://www.image-net.org.Search in Google Scholar

[37] Murphy, K.P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press.Search in Google Scholar

[38] Jiruska, P., Finnerty, G.T., Powell, A.D., Lofti, N., Cmejla, R., Jefferys, J.G.R. (2010). Epileptic high- frequency network activity in a model of non-lesional temporal lobe epilepsy. Brain, 133 (5), 1380–1390.10.1093/brain/awq070285915320400525Search in Google Scholar

[39] Casson, A.J., Luna, E., Rodriguez-Villegas, E. (2009). Performance metrics for the accurate characterisation of interictal spike detection algorithms. Journal of Neuroscience Methods, 177 (2), 479–487.10.1016/j.jneumeth.2008.10.01019007811Search in Google Scholar

[40] Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., Müller, M. (2011). pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12, 77.10.1186/1471-2105-12-77306897521414208Search in Google Scholar

[41] Model Evaluation: Quantifying the quality of predictions. https://scikit-learn.org/stable/modules/model_evaluation.html.Search in Google Scholar

[42] Boughorbel, S., Jarray, F., El-Anbari, M. (2017). Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric. PLoS One, 12 (6), e0177678.10.1371/journal.pone.0177678545604628574989Search in Google Scholar

[43] Iuchi, H. (2017). mccr: The Matthews correlation coefficient (v. 0.4.4). https://CRAN.R-project.org/package=mccr.Search in Google Scholar

[44] Krizhevsky, A., Sutskever, I., Hinton, G.E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60 (6), 84-90.10.1145/3065386Search in Google Scholar

[45] Montavon, G., Orr, G.B., Müller, K.-R. (eds.) (2012). Neural Networks: Tricks of the Trade. Springer.10.1007/978-3-642-35289-8Search in Google Scholar

[46] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015). Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 1-9.10.1109/CVPR.2015.7298594Search in Google Scholar

[47] Talo, M., Baloglu, U.B., Yıldırım, Ö., Rajendra Acharya, U. (2019). Application of deep transfer learning for automated brain abnormality classification using MR images. Cognitive Systems Research, 54, 176-188.10.1016/j.cogsys.2018.12.007Search in Google Scholar

[48] Arsalan, M., Naqvi, R., Kim, D., Nguyen, P., Owais, M., Park, K. (2018). IrisDenseNet: Robust iris segmentation using densely connected fully convolutional networks in the images by visible light and near-infrared light camera sensors. Sensors, 18 (5).10.3390/s18051501598187029748495Search in Google Scholar

[49] Llamas, J.M. Lerones, P.M., Medina, R., Zalama, E., Gómez-García-Bermejo, J. (2017). Classification of architectural heritage images using deep learning techniques. Applied Sciences, 7 (10).10.3390/app7100992Search in Google Scholar

[50] How to retrain an image classifier for new categories. http://www.tensorflow.org/hub/tutorials/image_retraining.Search in Google Scholar

eISSN:
1335-8871
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing