Open Access

Automated Acquisition of Proximal Femur Morphological Characteristics


Cite

[1] Pawlikowski, M., Skalski, K., Haraburda, M. (2003). Process of hip joint prosthesis design including bone remodeling phenomenon. Computers & Structures, 81 (8-11), 887-893.10.1016/S0045-7949(02)00428-5Search in Google Scholar

[2] Ramos, A., Completo, A., Relvas, C., Simoes, J.A. (2012). Design process of a novel cemented hip femoral stem concept. Materials & Design, 33, 313-321.10.1016/j.matdes.2011.07.039Search in Google Scholar

[3] Garellick, G., Karrbolm, J., Rogmark, C., Herberts, P. (2011). Annual Report 2010. Swedish Hip Arthroplasty Register.Search in Google Scholar

[4] International Organisation for Standardization. (2008). Implants for surgery - Partial and total hip joint prostheses - Part 1: Classification and designation of dimensions. ISO 7206-1.Search in Google Scholar

[5] Abadie, P., Lebel, B., Pineau, V., Burdin, G., Vielpeau, C. (2010). Cemented total Hip stem design influence on adaptative cortical thickness and femoral morphology. Orthopaedics & Traumatology: Surgery & Research, 96 (2), 104-110.10.1016/j.otsr.2009.11.011Search in Google Scholar

[6] Tabakovic, S., Zeljkovic, M., Zivkovic, A. (2013). General parametric model of the body of the total hip endoprosthesis. Acta Polytechnica Hungarica, 13.Search in Google Scholar

[7] Yuanzhi, C., Shengjun, Z., Yadong, W., Changyong, G., Jing, B., Shinichi, T. (2013). Automatic segmentation technique for acetabulum and femoral head in CT images. Pattern Recognition, 46 (11), 2969-2984.Search in Google Scholar

[8] Galibarov, P.E., Prendergast, P.J., Lennon, A.B. (2010). A method to reconstruct patient-specific proximal femur surface models from planar preoperative radiographs. Medical Engineering & Physics, 32 (10), 1180-1188.10.1016/j.medengphy.2010.08.00920933453Search in Google Scholar

[9] Otomaru, I., Nakamoto, M., Kagiyama, Y., Takao, M., Sugano, N., Tomiyama, N., Tada, Y., Sato, Y. (2012). Automated preoperative planning of femoral stem in total hip arthroplasty from 3D CT data: Atlas-based approach and comparative study. Medical Image Analysis, 16 (2), 415-426.10.1016/j.media.2011.10.00522119490Search in Google Scholar

[10] Rawal, B.R., Ribeiro, R., Malhotra, R., Bhatnagar, N. (2012). Design and manufacturing of femoral stems for the Indian population. Journal of Manufacturing Processes, 14 (3), 216-223.10.1016/j.jmapro.2011.12.004Search in Google Scholar

[11] Yongtae, J., Kuiwoon, C. (2010). Design of patientspecific hip implants based on the 3D geometry of the human femur. Advances in Engineering Software, 41 (4), 537-547.Search in Google Scholar

[12] Ruben, R., Fernandes, P., Folgado, J. (2012). On the optimal shape of hip implants. Journal of biomechanics, 45 (2), 239-246.10.1016/j.jbiomech.2011.10.03822115063Search in Google Scholar

[13] Kayabasi, O., Ekici, B. (2011). The effects of static, dynamic and fatigue behaviour on three-dimensional shape optimization of Kayabasi_Ekici type hip prosthesis by finite element method and probabilistic approach. Journal of Biomechanics, 44, 6.10.1016/j.jbiomech.2011.02.032Search in Google Scholar

[14] Sridhar, I., Adie, P.P., Ghista, D.N. (2010). Optimal design of customised hip prosthesis using fiber reinforced polymer composites. Materials & Design, 31 (6), 2767-2775.10.1016/j.matdes.2010.01.016Search in Google Scholar

[15] International Organisation for Standardization. (2011). Health informatics -- Digital imaging and communication in medicine (DICOM) including workflow and data management. ISO 12052.Search in Google Scholar

[16] Li, X. (2010). Semi-automatic segmentation of normal female pelvic floor structures from magnetic resonance images. Unpublished doctoral dissertation. Cleveland State University, USA.Search in Google Scholar

[17] Kale, E.H., Mumcuoglu, E.U., Hamcan, S. (2012). Automatic segmentation of human facial tissue by MRI-CT fusion: A feasibility study. Computer Methods and Programs in Biomedicine, 108 (3), 1106-1120.10.1016/j.cmpb.2012.07.00622958985Search in Google Scholar

[18] Gamage, P., Xie, S.Q., Delmas, P., Xu, W.L. (2011). Diagnostic radiograph based 3D bone reconstruction framework: Application to the femur. Computerized Medical Imaging and Graphics, 35 (6), 427-437.10.1016/j.compmedimag.2010.09.008Search in Google Scholar

[19] Wang, J., Ye, M., Liu, Z., Wang, C. (2009). Precision of cortical bone reconstruction based on 3D CT scans. Computerized Medical Imaging and Graphics, 33 (3), 235-241.10.1016/j.compmedimag.2009.01.001Search in Google Scholar

[20] Hauser, J.R. (2009). Numerical Methods for Nonlinear Engineering Models. Springer.10.1007/978-1-4020-9920-5Search in Google Scholar

[21] Mahaisavariya, B., Sitthiseripratip, K., Tongdee, T., Bohez, E., Sloten, J.V., Oris, P. (2002). Morphological study of the proximal femur: A new method of geometrical assessment using 3-dimensional reverse engineering. Medical Engineering & Physics, 24 (9), 617-622.10.1016/S1350-4533(02)00113-3Search in Google Scholar

[22] Ababneh, S., Prescott, J., Gurcan, M. (2011). Automatic graph-cut based segmentation of bones from knee magnetic resonance images for osteoarthritis research. Medical Image Analysis, 15 (4), 438-448.10.1016/j.media.2011.01.007313169521474362Search in Google Scholar

[23] Muhit, A.A., Pickering, M.R., Scarvell, J.M., Ward, T., Smith, P.N. (2013). Image-assisted non-invasive and dynamic biomechanical analysis of human joints. Physics in Medicine and Biology, 58, (13), 4679-4702.10.1088/0031-9155/58/13/467923774692Search in Google Scholar

[24] Van Cauter, S., De Beule, M., Han Haver, A., Verdonk, P., Verhegghe, B. (2012) Automated extraction of the femoral anatomical axis for determining the intramedullary rod parameters in total knee arthroplasty. International Journal for Numerical Methods in Biomedical Engineering, 28, 158-169. 10.1002/cnm.147825830211Search in Google Scholar

eISSN:
1335-8871
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing