Open Access

Dielectric Resonators for the Measurements of the Surface Impedance of Superconducting Films


Cite

[1] Oates, D. E. (2012). Microwave measurements of fundamental properties of superconductors. In 100 Years of Superconductivity. CRC Press, 459-471.Search in Google Scholar

[2] Hein, M. (2010). High-Temperature Superconductor Thin Films at Microwave Frequencies, Springer.Search in Google Scholar

[3] Weinstock, H., Nisenoff, M. (Eds.) (2001). Microwave Superconductivity. Kluwer Academic Publishers.10.1007/978-94-010-0450-3Search in Google Scholar

[4] Collin, R. E. (1992). Foundation for Microwave Engineering, 2nd Edition. McGraw-Hill.Search in Google Scholar

[5] Silva, E., Lanucara, M., Marcon, R. The effective surface resistance of superconductor/dielectric/metal structures. (1996). Superconductor Science and Technology, 9 (11), 934-941.10.1088/0953-2048/9/11/003Search in Google Scholar

[6] Maeda, A., Kitano, H., Inoue, R. (2005). Microwave conductivities of high-Tc oxide superconductors and related materials. J. Phys.: Condens. Matter, 17 (4), R143.Search in Google Scholar

[7] Booth, J. C., Wu, D. H., Anlage, S. M. (1994). A broadband method for the measurement of the surface impedance of thin films at microwave frequencies. Review of Scientific Instruments, 65, 2082.10.1063/1.1144816Search in Google Scholar

[8] Tosoratti, N., Fastampa, R., Giura, M., Lenzi, V., Sarti, S., Silva, E. (2000). Two techniques for broadband measurement of the surface impedance of high critical temperature superconducting thin films. International Journal of Modern Physics B, 14, 2926.10.1142/S0217979200003113Search in Google Scholar

[9] Silva, E., Pompeo, N., Sarti, S. (2011). Wideband microwave measurements in Nb/Pd84Ni16/Nb structures and comparison with thin Nb films. Superconductor Science and Technology, 24, 024018.10.1088/0953-2048/24/2/024018Search in Google Scholar

[10] Biondi,M. A., Garfunkel,M. P. (1959).Millimeter wave absorption in superconducting aluminum. I. Temperature dependence of the energy gap. Physical Review, 116, 853.Search in Google Scholar

[11] Turner, P. J., Broun, D. M., Kamal, S., Hayden, M. E., Bobowski, J. S., Harris, R., Morga, D. C., Preston, J. S., Bonn, D. A., Hardy,W. N. (2004). Bolometric technique for high-resolution broadband microwave spectroscopy of ultra-low-loss samples. Review of Scientific Instruments, 75, 124.10.1063/1.1633001Search in Google Scholar

[12] Nichols, C. S., Shiren, N. S., Laibowitz, R. B., Kazyaka, T. G. (1988). Microwave transmission through films of YBa2Cu3O7−d . Physical Review B, 38, 11970.10.1103/PhysRevB.38.119709946117Search in Google Scholar

[13] Golosovsky, M., Davidov, D., Rettori, C., Stern, A. (1989). Magnetic field modulation effects on the microwave transmission through superconducting thin films of Y-Ba-Cu-O. Physical Review B, 40, 9299.10.1103/PhysRevB.40.9299Search in Google Scholar

[14] Sridhar, S., Kennedy, W. L. (1988). Novel technique to measure the microwave response of high Tc superconductors between 4.2 and 200 K. Review of Scientific Instruments, 59 (4), 531-536.10.1063/1.1139881Search in Google Scholar

[15] Silva, E., Lezzerini, A., Lanucara, M., Sarti, S., Marcon, R. (1998). A cavity system for the measurement of the surface resistance at 48 GHz in high-Tc superconductors. Measurement Science and Technology, 9, 275.10.1088/0957-0233/9/2/016Search in Google Scholar

[16] Misra, M., Kataria, N. D., Pinto, R., Tonouchi, M., Srivastava, G. P. (2001). Sensitivity of Rs-measurement of HTS thin films by three prime resonant techniques: Cavity resonator, dielectric resonator, and microstrip resonator. IEEE Transactions on Applied Superconductivity, 11 (4), 4128-4135.10.1109/77.979855Search in Google Scholar

[17] Krupka, J., Mazierska, J. (2000). Single-crystal dielectric resonators for low-temperature electronics applications. IEEE Transactions on Microwave Theory and Techniques, 48 (7), 1270-1274.Search in Google Scholar

[18] Kim, J., Kim, M. S., Lee, K., Lee, J., Cha, D., Friedman, B. (2003). Development of a near-field scanning microwave microscope using a tunable resonance cavity for high resolution. Measurement Science and Technology, 14 (1), 7-12.10.1088/0957-0233/14/1/302Search in Google Scholar

[19] Pompeo, N., Marcon, R., Silva, E. (2007). Dielectric resonators for the measurement of superconductor thin films surface impedance in magnetic fields at high microwave frequencies. Journal of Superconductivity and Novel Magnetism, 20 (1), 71-82.10.1007/s10948-006-0192-5Search in Google Scholar

[20] Krupka, J., Derzakowski, K., Tobar, M., Hartnett, J., Geyer, R. G. (1999). Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures. Measurement Science and Technology, 10, 387-392.10.1088/0957-0233/10/5/308Search in Google Scholar

[21] Cherpak, N., Barannik, A., Filipov, Yu., Prokopenko, Yu., Vitusevich, S. (2003). Accurate microwave technique of surface resistance measurement of large-area HTS films using sapphire quasi-optical resonator. IEEE Transactions on Applied Superconductivity, 13 (2), 3570-3573.10.1109/TASC.2003.812400Search in Google Scholar

[22] Barannik, A.A., Bunyaev, S.A., Cherpak, N.T. (2008). On the low-temperature microwave response of a Y2Cu3O7−d epitaxial film determined by a new measurement technique. Low Temperature Physics, 34 (12), 977.10.1063/1.3029749Search in Google Scholar

[23] Barannik, A., Cherpak, N. T., Tanatar, M. A., Vitusevich, S., Skresanov, V., Canfield, P. C., Prozorov, R. (2013). Millimeter-wave surface impedance of optimally-doped Ba(Fe1−xCox)2As2 single crystals. Physical Review B, 87, 01450610.1103/PhysRevB.87.014506Search in Google Scholar

[24] Klein, O., Donovan, S., Dressel, M., Grüner, G. (1993). Microwave cavity perturbation technique: Part I: Principles. International Journal of Infrared and Millimeter Waves, 14 (12), 2423-2457.10.1007/BF02086216Search in Google Scholar

[25] Donovan, S., Klein, O., Dressel, M., Holczer, K., Grüner, G. (1993). Microwave cavity perturbation tech- nique: Part II: Experimental scheme. International Journal of Infrared and Millimeter Waves, 14 (12), 2459-2487.10.1007/BF02086217Search in Google Scholar

[26] Kobayashi, Y., Imai, T., Kayano, H. (1991). Microwave measurement of temperature and current dependences of surface impedance for high-Tc superconductors. IEEE Transactions on Microwave Theory and Techniques, 39 (9), 1530-1538.10.1109/22.83828Search in Google Scholar

[27] Lee, J. H., Yang, W. I., Kim, M. J., Booth, J. C., Leong, K., Schima, S., Rudman, D., Lee, S. Y. (2005). Accurate measurements of the intrinsic surface impedance of thin YBa2Cu3O7−d films using a modified two-tone resonator method. IEEE Transactions on Applied Superconductivity, 15 (2), 3700-3705.10.1109/TASC.2005.849399Search in Google Scholar

[28] Kajfez, D. (1994). Linear fractional curve fitting for measurement of high Q factors. IEEE Transactions on Microwave Theory and Techniques, 42 (7), 1149-1153.10.1109/22.299749Search in Google Scholar

[29] Petersan, P. J., Anlage, S. M. (1998). Measurement of resonant frequency and quality factor of microwave resonators: Comparison of methods. Journal of Applied Physics, 84 (6), 3392-3402.10.1063/1.368498Search in Google Scholar

[30] Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery B. P. (2002). Numerical Recipes in C, The Art of Scientific Computing, 2nd Edition. Cambridge University Press.Search in Google Scholar

[31] Hakki, B. W., Coleman, P. D. (1960). A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Transactions on Microwave Theory and Techniques, 8 (4), 402-410.10.1109/TMTT.1960.1124749Search in Google Scholar

[32] Krupka, J., Klinger, M., Kuhn, M., Baranyak, A., Stiller, M., Hinken, J., Modelski, J. (1993). Surface resistance measurements of HTS films by means of sapphire dielectric resonators. IEEE Transactions on Applied Superconductivity, 3 (3), 3043-3048.10.1109/77.234839Search in Google Scholar

[33] Powell, R. L., Fickett, F. R. (1979). Cryogenic Properties of Copper. International Copper Research Association.Search in Google Scholar

[34] Reaney, I. M., Iddles, D. (2006). Microwave dielectric ceramics for resonators and filters in mobile phone networks. Journal of the American Ceramic Society, 89 (7), 2063-2072.10.1111/j.1551-2916.2006.01025.xSearch in Google Scholar

[35] Klein, N., Dähne, U., Schulz, H., Tellmann, N., Kutzner, R., Zaitsev, A. G., Wördenweber, R. (1995). Dielectric properties of rutile and its use in high temperature superconducting resonators. Journal of Applied Physics, 78, 6683.10.1063/1.360490Search in Google Scholar

[36] Tinkham, M. (1996). Introduction to Superconductivity, 2nd Edition. McGraw-Hill.Search in Google Scholar

[37] Blatter, G., Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I., Vinokur, V. M. (1997). Vortices in high-temperature superconductors. Reviews of Modern Physics, 66, 1377.Search in Google Scholar

[38] Gittleman J., Rosenblum, B. (1966). Radio-frequency resistance in the mixed state for subcritical currents. Physical Review Letters, 16, 734.10.1103/PhysRevLett.16.734Search in Google Scholar

[39] Leong, K., Mazierska, J. (2001). Accurate measurements of surface resistance of HTS films using a novel transmission mode Q-Factor technique. Journal of Superconductivity and Novel Magnetism, 41 (1), 93-103.Search in Google Scholar

[40] Leong, K., Mazierska, J. (2002). Precise measurements of the Q factor of dielectric resonators in the transmission mode-accounting for noise, crosstalk, delay of uncalibrated lines, coupling loss, and coupling reactance. IEEE Transactions on Microwave Theory and Techniques, 50 (9), 2115-2127.10.1109/TMTT.2002.802324Search in Google Scholar

[41] Mazierska, J., Wilker, C. (2001). Accuracy issues in surface resistance measurements of high temperature superconductors using dielectric resonators (corrected). IEEE Transactions on Applied Superconductivity, 11 (4), 4140-4147.10.1109/77.979858Search in Google Scholar

[42] Torokhtii, K., Attanasio, C., Cirillo, C., Ilyina, E.A., Pompeo, N., Sarti, S., Silva, E. (2012). Vortex motion in Nb/PdNi/Nb trilayers: New aspects in the flux flow state. Physica C, 479, 140142. 10.1016/j.physc.2011.12.011Search in Google Scholar

eISSN:
1335-8871
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing