Open Access

Investigation of Short-term Amplitude and Frequency Fluctuations of Lasers for Interferometry


Cite

[1] Korpelainen, V., Seppa, J., Lassila, A. (2010). Design and characterization of MIKES metrological atomic force microscope. Precision Engineering, 34 (4), 735-744.10.1016/j.precisioneng.2010.04.002Search in Google Scholar

[2] Otsuka, J., Ichikawa, S., Masuda, T., Suzuki, K. (2005). Development of a small ultraprecision positioning device with 5 nm resolution. MeasurementScience and Technology, 16 (11), 2186-2192.10.1088/0957-0233/16/11/008Search in Google Scholar

[3] Dai, G.L., Pohlenz, F., Danzebrink, H.U., Xu, M., Hasche, K., Wilkening, G. (2004). Metrological large range scanning probe microscope. Review ScientificInstruments, 75 (4), 962-969.10.1063/1.1651638Search in Google Scholar

[4] Lazar, J., Cip, O., Cizek, M., Hrabina, J., Sery, M., Klapetek, P. (2010). Interferometer controlled positioning for nanometrology. In Nanocon 2010 : 2ndInternational Conference, 12-14 October 2010, 287-291.Search in Google Scholar

[5] Kim, J.A., Kim, J.W., Park, B.C., Eom, T.B. (2006). Measurement of microscope calibration standards in nanometrology using a metrological atomic force microscope. Measurement Science and Technology, 17 (7), 1792-1800.10.1088/0957-0233/17/7/018Search in Google Scholar

[6] Jäger, G., Gruenwald, R., Manske, E., Hausotte, T., Fuessl, R. (2004). A nanopositioning and nanomeasuring machine: Operation-measured results. Nanotechnology and Precision Engineering, 2, 81-84.Search in Google Scholar

[7] Lazar, J., Hrabina, J., Sery, M., Klapetek, P., Cip, O. (2012). Multiaxis interferometric displacement measurement for local probe microscopy. CentralEuropean Journal of Physics, 10 (1), 225-231.10.2478/s11534-011-0093-5Search in Google Scholar

[8] Hrabina, J., Lazar, J., Klapetek, P., Cip, O. (2011). AFM nanometrology interferometric system with the compensation of angle errors. In Optical MeasurementSystems for Industrial Inspection VII. SPIE, Vol. 8082, art. no. 80823U.10.1117/12.889544Search in Google Scholar

[9] Quinn, T.J. (1994). Mise-en-pratique of the definition of the meter (1992). Metrologia, 30 (5), 523-541.10.1088/0026-1394/30/5/011Search in Google Scholar

[10] Ciddor, P.E., Bruce, C.F. (1981). Long-term stability of a thermally-stabilized He-Ne laser. Metrologia, 17 (1), 17-18.10.1088/0026-1394/17/1/004Search in Google Scholar

[11] Balhorn, R., Lebowsky, F., Kunzmann, H. (1972). Frequency stabilization of internal-mirror helium-neon lasers. Applied Optics, 11 (4), 742.10.1364/AO.11.00074220119037Search in Google Scholar

[12] Ciddor, P.E., Duffy, R.M. (1983). Two-mode frequency stabilized He-Ne (633 nm) lasers: Studies of short-term and long-term stability. Journal of PhysicsE, 16 (12), 1223-1227.Search in Google Scholar

[13] Hrabina, J., Petru, F., Jedlicka, P., Cip, O., Lazar, J. (2007). Purity of iodine cells and optical frequency shift of iodine-stabilized He-Ne lasers. Journal ofOptoelectronics and Advanced Materials, 1 (5), 202-206.Search in Google Scholar

[14] Sevcik, R., Guttenova, J. (2007). Primary length standard adjustment. In Wave and Quantum Aspects ofContemporary Optics : 15th Czech-Polish-SlovakConference, 11-15 September 2007, 66-67.Search in Google Scholar

[15] Bartl, J., Guttenova, J., Jacko, V., Sevcik, R. (2007). Circuits for optical frequency stabilization of metrological lasers. In Measurement 2007 : 6thInternational Conference on Measurement, 20-24 May 2007. IMS SAS, 131-134.Search in Google Scholar

[16] Holzwarth, R., Nevsky, A.Y., Zimmermann, M. et al. (2001). Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer. AppliedPhysics B, 73 (3), 269-271.10.1007/s003400100633Search in Google Scholar

[17] Hrabina, J., Jedlicka, P., Lazar, J. (2008). Methods for measurement and verification of purity of iodine cells for laser frequency stabilization. Measurement ScienceReview, 8 (5), 118-121.10.2478/v10048-008-0025-8Search in Google Scholar

[18] Privalov, V.E., Shemanin, V.G., Voronina, E.I. (2010). Iodine molecules differential absorption cross section lidar studies. Measurement Science Review, 10 (3), 108-110.10.2478/v10048-010-0015-5Search in Google Scholar

[19] Simmons, J.D., Hougen, J.T. (1977). Atlas of I2 spectrum from 19 000 to 18 000 cm-1. Journal ofResearch of the National Bureau of Standards A, 81 (1), 25-80.Search in Google Scholar

[20] Hrabina, J., Lazar, J., Cip, O., Cizek, M. (2010). Laser source for interferometry in nanotechnology. In Waveand Quantum Aspects of Contemporary Optics : 17thSlovak-Czech-Polish Optical Conference, 6-10 September, 2010. SPIE, Vol. 7746, art. no. 77461I.Search in Google Scholar

[21] Cao, H.J., Zang, E.J., Zhao, K., Zhang, X.B., Wu, Y.X., Shen, N.C. (1998). Frequency stabilization of a Nd : YAG laser to Doppler-broadened lines of iodine near 532nm. In Conference on PrecisionElectromagnetic Measurements Digest, 6-10 July 1998. IEEE, 183-184.Search in Google Scholar

[22] Hrabina, J., Lazar, J., Klapetek, P., Cip, O. (2011). Multidimensional interferometric tool for the local probe microscopy nanometrology. MeasurementScience and Technology, 22 (9), art. no. 094030.10.1088/0957-0233/22/9/094030Search in Google Scholar

[23] Lazar, J., Hola, M., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2012). Displacement interferometry with stabilization of wavelength in air. Optics Express, 20 (25), 27830-27837.10.1364/OE.20.02783023262728Search in Google Scholar

[24] Edlen, B. (1966). The refractive index of air. Metrologia, 2, 71-80.10.1088/0026-1394/2/2/002Search in Google Scholar

[25] Birch, K.P., Downs, M.J. (1994). Correction to the updated edlen equation for the refractive-index of air. Metrologia, 31 (4), 315-316.10.1088/0026-1394/31/4/006Search in Google Scholar

[26] Lazar, J., Hola, M., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2012). Refractive index compensation in over-determined interferometric system. Sensors, 12 (10), 14084-14094.10.3390/s121014084354560823202037Search in Google Scholar

[27] Quoc, T.B., Ishige, M., Ohkubo, Y., Aketagawa, M. (2009). Measurement of air-refractive-index fluctuation from laser frequency shift with uncertainty of order 10(-9). Measurement Science and Technology, 20 (12), art. no. 125302.10.1088/0957-0233/20/12/125302Search in Google Scholar

[28] Lazar, J., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2011). Standing wave interferometer with stabilization of wavelength on air. tm - TechnischesMessen, 78 (11), 484-488.10.1524/teme.2011.0201Search in Google Scholar

[29] Zhang, J., Lu, Z.H., Menegozzi, B., Wang, L.J. (2006). Application of frequency combs in the measurement of the refractive index of air. Review ScientificInstruments, 77 (8), art. no. 083104.10.1063/1.2239036Search in Google Scholar

[30] Lazar, J., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2011). Suppression of air refractive index variations in high-resolution interferometry. Sensors, 11 (8), 7644-7655.10.3390/s110807644Search in Google Scholar

[31] Lazar, J., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2010). Interferometry with direct compensation of fluctuations of refractive index of air. In Wave andQuantum Aspects of Contemporary Optics : 17thSlovak-Czech-Polish Optical Conference, 6-10 September, 2010. SPIE, Vol. 7746, art. no. 77460E.Search in Google Scholar

[32] Nyholm, K., Merimaa, M., Ahola, T., Lassila, A. (2003). Frequency stabilization of a diode-pumped Nd:Yag laser at 532 nm to iodine by using thirdharmonic technique. IEEE Transaction onInstrumentation and Measurement, 52 (2), 284-287.10.1109/TIM.2003.811679Search in Google Scholar

[33] Nevsky, A.Y., Holzwarth, R., Reichert, J. et al. (2001). Frequency comparison and absolute frequency measurement of I-2-stabilized lasers at 532 nm. OpticsCommumications, 192 (3-6), 263-272.10.1007/3-540-45395-4_40Search in Google Scholar

[34] Rovera, G.D., Ducos, F., Zondy, J.J., Acef, O., Wallerand, J.P., Knight, J.C., Russell, P.S. (2002). Absolute frequency measurement of an I-2 stabilized Nd:YAG optical frequency standard. MeasurementScience and Technology, 13 (6), 918-922.10.1088/0957-0233/13/6/313Search in Google Scholar

[35] Galzerano, G., Bava, E., Bisi, M., Bertinetto, F., Svelto, C. (1998). Frequency stabilization of frequency-doubled Nd : YAG lasers at 532 nm. In Conference on Precision ElectromagneticMeasurements Digest, 6-10 July 1998. IEEE, 193-194.Search in Google Scholar

[36] Galzerano, G., Bava, E., Bisi, M., Bertinetto, F., Svelto, C. (1999). Frequency stabilization of frequency-doubled Nd : YAG lasers at 532 nm by frequency modulation spectroscopy technique. IEEETransaction on Instrumentation and Measurement, 48 (2), 540-543.10.1109/19.769653Search in Google Scholar

[37] Lazar, J., Hrabina, J., Jedlicka, P., Cip, O. (2009). Absolute frequency shifts of iodine cells for laser stabilization. Metrologia, 46 (5), 450-456.10.1088/0026-1394/46/5/008Search in Google Scholar

[38] Picard, S., Robertsson, L., Ma, L.S., Nyholm, K. et al. (2003). Comparison of 127I2-stabilized frequencydoubled Nd:YAG lasers at the Bureau International des Poids et Mesures. Applied Optics, 42 (6), 1019-1028.Search in Google Scholar

[39] Lance, A.L., Seal, W.D., Labaar, F. (1982). Phase noise measurement systems. ISA Transactions, 21 (4), 37-44.Search in Google Scholar

[40] Badami, V.G., Patterson, S.R. (2000). A frequency domain method for the measurement of nonlinearity in heterodyne interferometry. Precision Engineering, 24 (1), 41-49.10.1016/S0141-6359(99)00026-4Search in Google Scholar

[41] Cip, O., Petru, F. (2000). A scale-linearization method for precise laser interferometry. Measurement Scienceand Technology, 11 (2), 133-141.Search in Google Scholar

[42] Eom, T., Kim, J., Jeong, K. (2001). The dynamic compensation of nonlinearity in a homodyne laser interferometer. Measurement Science and Technology, 12 (10), 1734-1738.10.1088/0957-0233/12/10/318Search in Google Scholar

[43] Rerucha, S., Buchta, Z., Sarbort, M., Lazar, J., Cip, O. (2012). Detection of interference phase by digital computation of quadrature signals in homodyne laser interferometry. Sensors, 12 (10), 14095-14112.10.3390/s121014095354560923202038Search in Google Scholar

[44] Siffalovic, P., Vegso, K., Jergel, M., Majkova, E. et al. (2010). Measurement of nanopatterned surfaces by real and reciprocal space techniques. MeasurementScience Review, 10 (5), 153-156.10.2478/v10048-010-0027-1Search in Google Scholar

[45] Petru, F., Cip, O. (1999). Problems regarding linearity of data of a laser interferometer with a singlefrequency laser. Precision Engineering, 23 (1), 39-50.10.1016/S0141-6359(98)00023-3Search in Google Scholar

[46] Smid, R., Cip, O., Lazar, J. (2008). Precise length etalon controlled by stabilized frequency comb. Measurement Science Review, 8 (5), 114-117.Search in Google Scholar

[47] Meiners-Hagen, K., Schodel, R., Pollinger, F., Abou- Zeid, A. (2009). Multi-wavelength interferometry for length measurements using diode lasers. MeasurementScience Review, 9 (1), 16-26.10.2478/v10048-009-0001-ySearch in Google Scholar

[48] Petru, F., Popela, B., Vesela, Z. (1993). Design and performance of compact iodine stabilized He-Ne lasers at lambda=633 nm with a short optical resonator. Measurement Science and Technology, 4 (4), 506-512.10.1088/0957-0233/4/4/012Search in Google Scholar

eISSN:
1335-8871
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing