Open Access

Recovery of Metals from Printed Circuit Boards By Means of Electrostatic Separation

Management Systems in Production Engineering's Cover Image
Management Systems in Production Engineering
Special Issue: IMTech2020-INNOVATIVE MINING TECHNOLOGIES. Editors: Dariusz Prostański, Bartosz Polnik

Cite

[1] A. Cieśla, W. Kraszewski, M. Skowron, A. Surowiak, P. Syrek. “Wykorzystanie bębnowego separatora elektrodynamicznego do separacji odpadów elektronicznych.” Mineral resources management, vol. 32(1), pp. 155-174, 2016.10.1515/gospo-2016-0007 Search in Google Scholar

[2] A. Kumar, M. E. Holuszko, T. Janke. “Characterization of the non-metal fraction of the processed waste printed circuit boards.” Waste Management, vol. 75, pp. 94-102, 2018.10.1016/j.wasman.2018.02.01029449113 Search in Google Scholar

[3] A. Tuncuk, V. Stazi, A. Akcil, E.Y. Yazici, H. Deveci. “Aqueous metal recovery techniques from e-scrap: Hydrometallurgy in recycling.” Minerals Engineering, vol. 25, pp. 28-37, 2012.10.1016/j.mineng.2011.09.019 Search in Google Scholar

[4] B. Niu, Z. Chen, Z. Xu. “Recovery of Valuable Materials from Waste Tantalum Capacitors by Vacuum Pyrolysis Combined with Mechanical-Physical Separation.” ACS Sustainable Chemistry & Engineering, vo. 5(3), pp. 2639-2647, 2017. Search in Google Scholar

[5] C.P. Baldé, V. Forti, V. Gray, R. Kuehr, P. Stegmann, 2017. “The Global E-waste Monitor–2017” United Nations University (UNU), International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Vienna. Search in Google Scholar

[6] D. Franke, T. Suponik. “Metals recovery from e-scrap using gravity, electrostatic and magnetic separations.” IOP Conf. Series: Materials Science and Engineering 545(012016), 2019.10.1088/1757-899X/545/1/012016 Search in Google Scholar

[7] D. Shangguan (Ed.). “Lead-Free Solder Interconnect Reliability.” ASM International, Ohio, 2005. Search in Google Scholar

[8] F. Burat, M. Özer. “Physical separation route for printed circuit boards.” Physicochemical Problems of Mineral Processing, vol. 54(2), pp. 554-566, 2018. Search in Google Scholar

[9] J. Drzymała. “Mineral processing.” Ofic. Wyd. PWr, Wrocław, 2007. Search in Google Scholar

[10] J. Guo, J. Guo, Z. Xu. “Recycling of non-metallic fractions from waste printed circuit boards: A review.” Journal of Hazardous materials, vol. 168(2-3), pp. 567-590, 2009.10.1016/j.jhazmat.2009.02.10419303702 Search in Google Scholar

[11] J. Kozłowski, W. Mikłasz, D. Lewandowski and H. Czyżyk, “Research on hazardous waste - management part I”, Archives of Waste Management and Environmental Protection, vol. 15, no. 2, pp. 69-76, 2013. Search in Google Scholar

[12] J. LaDou. “Printed circuit board industry” International Journal of Hygiene and Environmental Health, vol.209 (3), pp. 211-219, 2006.10.1016/j.ijheh.2006.02.00116580876 Search in Google Scholar

[13] J. Li, Q. Zhou, Z. Xu, “Real-time monitoring system for improving corona electrostatic separation in the process of recovering waste printed circuit boards”, Waste Manag Res, vol. 32, no. 12, pp. 1227-1234, 2014. Search in Google Scholar

[14] J. Li, Z. Xu, and Y. Zhou, “Application of corona discharge and electrostatic force to separate metals and nonmetals from crushed particles of waste printed circuit boards”, Journal of Electrostatics, vol. 65, no. 4, pp. 233-238, 2007.10.1016/j.elstat.2006.08.004 Search in Google Scholar

[15] J. Sohaili, S.K. Muniyandi, S.S. Mohamad. “A review on printed circuit board recycling technology.” Journal of Emerging Trends in Engineering and Applied Sciences, vol. 3(1), pp. 12-18, 2012. Search in Google Scholar

[16] J. Wu, J. Li, and Z. Xu, “Electrostatic Separation for Recovering Metals and Nonmetals from Waste Printed Circuit Board: Problems and Improvements”, Environ. Sci. Technol., vol. 42, no. 14, pp. 5272-5276, 2008. Search in Google Scholar

[17] J. Wu, J. Li, Z. Xu. “Electrostatic separation for multi-size granule of crushed printed circuit board waste using two-roll separator.” Journal of hazardous materials, vol. 159(2-3), pp. 230-23, 2008.10.1016/j.jhazmat.2008.02.01318346846 Search in Google Scholar

[18] L. Dascalescu, A. Tilmatine, F. Aman, M. Mihailescu. “Optimization of electrostatic separation Processes using response surface modeling.” IEEE Transactions on Industry Applications, vol. 40 (1), pp. 53-59, 2004.10.1109/TIA.2003.821812 Search in Google Scholar

[19] L. Hongzhou, L. Jia, G. Jie, X. Zhemning. “Movement behavior in electrostatic separation: Recycling of metal materials from waste printed circuit board.” Journal of Materials Processing Technology, vol. 197 (1-3), pp. 101-108, 2008.10.1016/j.jmatprotec.2007.06.004 Search in Google Scholar

[20] M. Tatariants, S. Yousef, R. Sidaraviciute, G. Denafas, R. Bendikiene. “Characterization of waste printed circuit boards recycled using a dissolution approach and ultrasonic treatment at low temperatures.” RSC Adv. 7, pp. 37729-37738, 2017. Search in Google Scholar

[21] N. P. Cheremisinoff, P. N. Cheremisinoff. “Fiberglass Reinforced Plastics.” Noyes Publications, USA, 1995.10.1016/B978-081551389-6.50007-6 Search in Google Scholar

[22] R. G. Charles, P. Douglas, I. L. Hallin, I. Matthews, G. Liver-sage. “An investigation of trends in precious metal and copper content of RAM modules in WEEE: Implications for long term recycling potential.” Waste Management vol. 60, pp. 505-520, 2017.10.1016/j.wasman.2016.11.01827890594 Search in Google Scholar

[23] A. Elbakian, B. Sentyakov, P. Bozek, I. Kuric, K. Sentyakov. Automated separation of basalt fiber and other earth resources by the means of acoustic vibrations. Acta Montanistica Slovaca. Vol. 23, no. 3, pp. 271-281, 2018. Search in Google Scholar

[24] S. Zhang, Y. Ding, B. Liu, D.A. Pan, C.C. Chang, A.A. Volinsky. “Challenges in legislation, recycling system and technical system of waste electrical and electronic equipment in China.” Waste management, vol. 45, pp. 361-373, 2015.10.1016/j.wasman.2015.05.01526059074 Search in Google Scholar

[25] V. Goodship, A. Stevels, J. Huisman, J. “Waste electrical and electronic equipment (WEEE) handbook”, Woodhead Publishing, 2019. Search in Google Scholar

[26] V. Kumar, J. C. Lee, J. Jeong, M. K. Jha, B.S. Kim, R. Singh. “Recycling of printed circuit boards (PCB) to generate enriched rare metal concentrate.” Journal of Industrial and Engineering Chemistry, vol. 21, pp. 805-813, 2015.10.1016/j.jiec.2014.04.016 Search in Google Scholar

[27] W. Bizzo, R. Figueiredo, V. de Andrade. “Characterization of printed circuit boards for metal and energy recovery after milling and mechanical separation.” Materials, vol. 7(6), pp. 4555-4566, 2014. Search in Google Scholar

[28] W. M. Haynes (Ed.). “CRC Handbook of Chemistry and Phisics”, CRC Press, 2017.10.1201/9781315380476 Search in Google Scholar

[29] P. Bozek, Y. Nikitin, P. Bezak, G. Fedorko, M. Fabian. Increasing the production system productivity using inertial navigation. Manufacturing technology. Vol. 15, no. 3, online, pp. 274-278. 2015.10.21062/ujep/x.2015/a/1213-2489/MT/15/3/274 Search in Google Scholar

[30] R. Qiu et al., “Recovering full metallic resources from waste printed circuit boards: A refined review”, Journal of Cleaner Production, vol. 244, p. 118690, 2020. Search in Google Scholar

[31] Y. Chen, G. Zhu, Y. Zhou, M. Wang, X. Jia, X. Zhu. “Reflow soldering method with gradient energy band generated by optical system.” Optics express, vol. 26(22), pp. 29103-29215, 2018. Search in Google Scholar