Open Access

Effect of fuel type on the combustion reaction behavior, phase structure and morphology of Ni0.5Co0.5Fe2O4 nanoparticles


Cite

Nickel-cobalt ferrite spinels are ferrimagnetic ceramic materials that possess a great potential for application in highdensity magnetic media, recording, color imaging, ferrofluids, and high-frequency devices. A change of their structure from micro- to nano- improves their properties drastically, therefore many methods have been investigated to fabricate nanopowder of these spinels. Gel combustion method is one of them. In this research, Ni0 5Co0 5Fe2O4 nanoparticles were fabricated via gel combustion method using metallic nitrates as an oxidant and citric acid, glycine and urea as fuels and the effects of fuel type on the reaction behavior, structure and morphology of Ni0 5Co0 5Fe2O4 nanoparticles were investigated. The reaction behavior was studied by thermal analysis method (TGA-DTA), crystallite size of powders was characterized by X-ray diffraction (XRD) and their morphology was studied by FE-SEM. The results revealed that the reaction was initiated in urea, glycine and citric at 219 °C, 197 °C, 212 °C, respectively. Samples fabricated from glycine and citric acid had a pure spinel structure but the others fabricated with urea fuel had iron oxide impurity. The crystallite size of nickel cobalt ferrite nanoparticles was in the range of 58 nm to 64 nm and the nanoparticles were agglomerated.

eISSN:
2083-134X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties