Open Access

Structure and performance optimization of phenol polyphosphazene grafted by 2,4-dinitroaniline containing small nonlinear optical molecules

 and    | Dec 30, 2019

Cite

Electro-optic (EO) polymers, possessing high EO coefficient and low dielectric constant, are considered to be a new generation of nonlinear optical materials that have great application prospect in photo-communication, information storage, and data processing. The host-guest structure of EO polymers is the most typical one in this field. However, the phase separation during polarization between the host polymer and the guest nonlinear optical molecule (NLO) limits potential applications of the material. To solve the problem, a new synthetic method was designed in this paper. First, 2,4-dinitroaniline was grafted to phenol polyphosphazene by chemical method for polar improvement of the main chain. Then, another small NLO molecule was mixed into the polymer by physical method for further improvement of EO coefficient. The preparation process was studied and the structure of the product was characterized. The effects of different NLO mixing proportions and different polarizing temperatures on EO coefficient were investigated in details. Orientation stability of the sample was tested. Experimental results show that our products possess not only high EO coefficient but also good phase stability, which makes them good candidates for the application in information technology.

eISSN:
2083-134X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties