Open Access

Serotonin Immunoreactive Cells in Extrahepatic Bile Ducts, Major Duodenal Papilla and Gallbladder in the Domestic Pig


Cite

Patel, B.A., Bian, X., Quaiserova-Mocko, V., Galligan, J.J., Swain, G.M. (2007). In vitro continuous amperometric monitoring of 5-hydroxytryptamine release from enterochromaffin cells of the guinea pig ileum. Analyst 132, 41-47. https://doi.org/10.1039/B611920D PMid:17180178 Search in Google Scholar

Gershon, M.D. (2005). Nerves, reflexes, and the enteric nervous system: pathogenesis of the irritable bowel syndrome. J Clin Gastroenterol. 39(5 Suppl. 3): S184-193. https://doi.org/10.1097/01.mcg.0000156403.37240.30 PMid:15798484 Search in Google Scholar

Hoffman, J.M., Tyler, K., MacEachern, S.J., Balemba, O.B., Johnson, A.C., Brooks, E.M., Zhao, H., et al. (2012). Activation of colonic mucosal 5-HT(4) receptors accelerates propulsive motility and inhibits visceral hypersensitivity. Gastroenterology 142(4): 844-854.e4. https://doi.org/10.1053/j.gastro.2011.12.041 PMid:22226658 PMCid:PMC3477545 Search in Google Scholar

Côté, F., Thévenot, E., Fligny, C., Fromes, Y., Darmon, M., Ripoche, M.A., Bayard, E., et al. (2003). Disruption of the nonneuronal tph1 gene demonstrates the importance of peripheral serotonin in cardiac function. Proc Natl Acad Sci U S A. 100(23): 13525-13530. https://doi.org/10.1073/pnas.2233056100 PMid:14597720 PMCid:PMC263847 Search in Google Scholar

Betari, N., Sahlholm, K., Ishizuka, Y., Teigen, K., Haavik, J. (2020). Discovery and biological characterization of a novel scaffold for potent inhibitors of peripheral serotonin synthesis. Future Med Chem. 12(16): 1461-1474. https://doi.org/10.4155/fmc-2020-0127 PMid:32752885 Search in Google Scholar

Walther, D.J., Bader, M. (2003). A unique central tryptophan hydroxylase isofor m. Biochem Pharmacol. 66(9): 1673-1680. https://doi.org/10.1016/S0006-2952(03)00556-2 PMid:14563478 Search in Google Scholar

Raybould, H.E. (2010). Gut chemosensing: interactions between gut endocrine cells and visceral afferents. Auton Neurosci. 153(1-2): 41-46. https://doi.org/10.1016/j.autneu.2009.07.007 PMid:19674941 PMCid:PMC3014315 Search in Google Scholar

Gershon, M.D. (1999). Roles played by 5-hydroxytryptamine in the physiology of the bowel. Aliment Pharmacol Ther. 13, (Suppl 2): 15-30. https://doi.org/10.1046/j.1365-2036.1999.00002.x-i2 Search in Google Scholar

Hatami-Monazah, H., Abdallah, O. (1978). Study on the morphology of the gall-bladder of the goat. Acta Anat (Basel). 100(2): 203-209. https://doi.org/10.1159/000144900 PMid:619497 Search in Google Scholar

Sand, J., Tainio, H., Nordback, I. (1993). Neuropeptides in pig sphincter of Oddi, bile duct, gallbladder, and duodenum. Dig Dis Sci. 38(4): 694-700. https://doi.org/10.1007/BF01316802 PMid:8462369 Search in Google Scholar

Gulubova, M.V., Valkova, I.V., Ivanova, K.V., Ganeva, I.G., Prangova, D.K., Ignatova, M.M.K., Vasilev, S.R., Stefanov, I.S. (2017). Endocrine cells in pig’s gallbladder, ductus cysticus and ductus choledochus with special reference to ghrelin. Bulg Chem Commun. Special Issue E. 184-190. Search in Google Scholar

Zuccarello, B., Spada, A., Turiaco, N., Villari, D., Parisi, S., Francica, I., Fazzari, C., et al. (2009). Intramural ganglion str uctures in esophageal atresia: a morphologic and immunohistochemical study. Int Jo Pediatr. 2009:695837. https://doi.org/10.1155/2009/695837 PMid:20041008 PMCid:PMC2778171 Search in Google Scholar

Costa, M., Brookes, S.J., Steele, P.A., Gibbins, I., Burcher, E., Kandiah, C.J. (1996). Neurochemical classification of myenteric neurons in the guinea-pig ileum. Neuroscience 75(3): 949-967. https://doi.org/10.1016/0306-4522(96)00275-8 PMid:8951887 Search in Google Scholar

Costa, M., Furness, J.B., Cuello, A.C., Verhofstad, A.A., Steinbusch, H.W., Elde, R.P. (1982). Neurons with 5-hydroxytryptamine-like immunoreactivity in the enteric nervous system: their visualization and reactions to drug treatment. Neuroscience 7(2): 351-363. https://doi.org/10.1016/0306-4522(82)90272-X PMid:6210850 Search in Google Scholar

Young, H.M., Furness, J.B. (1995). Ultrastructural examination of the targets of serotonin-immunoreactive descending interneurons in the guinea pig small intestine. J Comp Neurol. 356(1): 101-114. https://doi.org/10.1002/cne.903560107 PMid:7629305 Search in Google Scholar

Galligan, J.J., LePard, K.J., Schneider, D.A., Zhou, X. (2000). Multiple mechanisms of fast excitatory synaptic transmission in the enteric nervous system. J Auton Nerv Syst. 81(1-3): 97-103. https://doi.org/10.1016/S0165-1838(00)00130-2 PMid:10869707 Search in Google Scholar

Monro, R.L., Bertrand, P.P., Bornstein, J.C. (2002). ATP and 5-HT are the principal neurotransmitters in the descending excitatory reflex pathway of the guinea-pig ileum. Neurogastroenterol Motil. 14(3): 255-264. https://doi.org/10.1046/j.1365-2982.2002.00325.x PMid:12061910 Search in Google Scholar

Gustafsson, B.I., Bakke, I., Tømmerås, K., Waldum, H.L. (2006). A new method for visualization of gut mucosal cells, describing the enterochromaffin cell in the rat gastrointestinal tract. Scand J Gastroenterol. 41(4): 390-395. https://doi.org/10.1080/00365520500331281 PMid:16635905 Search in Google Scholar

Ahern, G.P. (2011). 5-HT and the immune system. Curr Opin Pharmacol. 11(1): 29-33. https://doi.org/10.1016/j.coph.2011.02.004 PMid:21393060 PMCid:PMC3144148 Search in Google Scholar

Shajib, M.S., Khan, W.I. (2015). The role of serotonin and its receptors in activation of immune responses and infammation. Acta Physiol (Oxf). 213(3): 561-574. https://doi.org/10.1111/apha.12430 PMid:25439045 Search in Google Scholar

Shajib, M.S., Baranov, A., Khan, W.I. (2017). Diverse efects of gut-derived serotonin in intestinal infammation. ACS Chem Neurosci. 8(5): 920-931. https://doi.org/10.1021/acschemneuro.6b00414 PMid:28288510 Search in Google Scholar

Hadengue, A., Moreau, R., Cerini, R., Koshy, A., Lee, S.S., Lebrec, D. (1989). Combination of ketanserin and verapamil or propranolol in patients with alcoholic cirrhosis: search for an additive effect. Hepatology 9(1): 83-87. https://doi.org/10.1002/hep.1840090113 PMid:2908872 Search in Google Scholar

Vorobioff, J., Garcia-Tsao, G., Groszmann, R., Aceves, G., Picabea, E., Villavicencio, R., Hernandez-Ortiz, J. (1989). Long-term hemodynamic effects of ketanserin, a 5-hydroxytryptamine blocker, in portal hypertensive patients. Hepatology 9(1): 88-91. https://doi.org/10.1002/hep.1840090114 PMid:2908873 Search in Google Scholar

Islam, M.Z., Williams, B.C., Madhavan, K.K., Hayes, P.C., Hadoke, P.W. (2000). Selective alteration of agonist-mediated contraction in hepatic arteries isolated from patients with cir rhosis. Gastroenterology 118(4): 765-771. https://doi.org/10.1016/S0016-5085(00)70146-6 PMid:10734028 Search in Google Scholar

Marzioni, M., Glaser, S., Francis, H., Marucci, L., Benedetti, A., Alvaro, D., Taffetani, S., et al. (2005). Autocrine/paracrine regulation of the growth of the biliary tree by the neuroendocrine hormone serotonin. Gastroenterology. 128(1): 121-137. https://doi.org/10.1053/j.gastro.2004.10.002 PMid:15633129 Search in Google Scholar

Cosme, A., Barrio, J., Lobo, C., Gil, I., Castiella, A., Arenas, J.I. (1996). Acute cholestasis by fluoxetine. Am J Gastroenterol. 91(11): 2449-2450. Search in Google Scholar

Ruddell, R.G., Mann, D.A., Ramm, G.A. (2008). The function of serotonin within the liver. J Hepatol. 48(4): 666-675. https://doi.org/10.1016/j.jhep.2008.01.006 PMid:18280000 Search in Google Scholar

Mann, D.A, Oakley, F. (2013). Serotonin paracrine signaling in tissue fibrosis. Biochim Biophys Acta. 1832(7): 905-910. https://doi.org/10.1016/j.bbadis.2012.09.009 PMid:23032152 PMCid:PMC3793867 Search in Google Scholar

Omenetti, A., Yang, L., Gainetdinov, R.R., Guy, C.D., Choi, S.S., Chen, W., Caron, M.G., Diehl, A.M. (2011). Paracrine modulation of cholangiocyte serotonin synthesis orchestrates biliary remodeling in adults. Am J Physiol Gastrointest Liver Physiol. 300(2): G303-315. https://doi.org/10.1152/ajpgi.00368.2010 PMid:21071507 PMCid:PMC3043647 Search in Google Scholar

Yu, P.L., Fujimura, M., Okumiya, K., Kinoshita, M., Hasegawa, H., Fujimiya, M. (1999). Immunohistochemical localization of tryptophan hydroxylase in the human and rat gastrointestinal tracts. J Comp Neurol. 411(4): 654-665. https://doi.org/10.1002/(SICI)1096-9861(19990906) 411:4<654::AID-CNE9>3.0.CO;2-H Search in Google Scholar

Buhner, S., Schemann, M. (2012). Mast cell-nerve axis with a focus on the human gut. Biochim Biophys Acta. 1822(1): 85-92. https://doi.org/10.1016/j.bbadis.2011.06.004 PMid:21704703 Search in Google Scholar

Kushnir-Sukhov, N.M., Brown, J.M., Wu, Y., Kirshenbaum, A., Metcalfe, D.D. (2007). Human mast cells are capable of serotonin synthesis and release. J Allergy Clin Immunol. 119(2): 498-499. https://doi.org/10.1016/j.jaci.2006.09.003 PMid:17291861 Search in Google Scholar

Kushnir-Sukhov, N.M., Brittain, E., Scott, L., Metcalfe, D.D. (2008). Clinical correlates of blood serotonin levels in patients with mastocytosis. Eur J Clin Invest. 38(12): 953-958. https://doi.org/10.1111/j.1365-2362.2008.02047.x PMid:19021721 PMCid:PMC3795418 Search in Google Scholar

Boehme, S.A., Lio, F.M., Sikora, L., Pandit, T.S., Lavrador, K., Rao, S.P., Sriramarao, P. (2004). Cutting edge: serotonin is a chemotactic factor for eosinophils and functions additively with eotaxin. J Immunol. 173(6): 3599-3603. https://doi.org/10.4049/jimmunol.173.6.3599 PMid:15356103 Search in Google Scholar

Kushnir-Sukhov, N.M., Gilfillan, A.M., Coleman, J.W., Brown, J.M., Bruening, S., Toth, M., Metcalfe, D.D. (2006). 5-hydroxytr yptamine induces mast cell adhesion and migration. J Immunol. 177(9):6422-6432. https://doi.org/10.4049/jimmunol.177.9.6422 PMid:17056574 Search in Google Scholar

Idzko, M., Panther, E., Stratz, C., Müller, T., Bayer, H., Zissel, G., Dürk, T., et al. (2004). The serotoninergic receptors of human dendritic cells: identification and coupling to cytokine release. J Immunol. 172(10): 6011-6019. https://doi.org/10.4049/jimmunol.172.10.6011 PMid:15128784 Search in Google Scholar

Müller, T., Dürk, T., Blumenthal, B., Grimm, M., Cicko, S., Panther, E., Sorichter, S., et al. (2009). 5-hydroxytryptamine modulates migration, cytokine and chemokine release and T-cell priming capacity of dendritic cells in vitro and in vivo. PLoS One. 4(7): e6453. https://doi.org/10.1371/journal.pone.0006453 PMid:19649285 PMCid:PMC2714071 Search in Google Scholar

Dürk, T., Panther, E., Müller, T., Sorichter, S., Ferrari, D., Pizzirani, C., Di Virgilio, F., et al. (2005). 5-Hydroxytryptamine modulates cytokine and chemokine production in LPS-primed human monocytes via stimulation of different 5-HTR subtypes. Int Immunol. 17(5): 599-606. https://doi.org/10.1093/intimm/dxh242 PMid:15802305 Search in Google Scholar

Soga, F., Katoh, N., Inoue, T., Kishimoto, S. (2007). Serotonin activates human monocytes and prevents apoptosis. J Invest Dermatol. 127(8): 1947-1955. https://doi.org/10.1038/sj.jid.5700824 PMid:17429435 Search in Google Scholar

Ghia, J.E., Li, N., Wang, H., Collins, M., Deng, Y., El-Sharkawy, R.T., Côté, F., et al. (2009). Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology 137(5): 1649-1660. https://doi.org/10.1053/j.gastro.2009.08.041 PMid:19706294 Search in Google Scholar

Murtaugh, M.P., Monteiro-Riviere, N.A., Panepinto, L. (1996). Swine research breeds, methods, and biomedical models. In: M.E. Tumbleson, Schook L.B., (Eds.), Advances in Swine in Biomedical Research, Vol. 2 (pp. 423-424). Springer New York, NY https://doi.org/10.1007/978-1-4615-5885-9_1 Search in Google Scholar

Walters, E.M., Prather, R.S. (2013). Advancing swine models for human health and diseases. Mo Med. 110(3): 212-215. Search in Google Scholar

Zhu, H.Y., Li, F., Li, K.W., Zhang, X.W., Wang, J., Ji, F. (2013). Transumbilical endoscopic cholecystectomy in a porcine model. Acta Cir Bras. 28(11): 762-766. https://doi.org/10.1590/S0102-86502013001100003 PMid:24316742 Search in Google Scholar

Gilloteaux, J., Pomerants, B., Kelly, T.R. (1989). Human gallbladder mucosa ultrastructure: evidence of intraepithelial nerve structures. Am J Anat. 184(4): 321-333. https://doi.org/10.1002/aja.1001840407 PMid:2474241 Search in Google Scholar

Cristina, M.L., Lehy, T., Zeitoun, P., Dufougeray, F. (1978). Fine structural classification and comparative distribution of endocrine cells in normal human large intestine. Gastroenterology. 75(1): 20-28. https://doi.org/10.1016/0016-5085(78)93758-7 PMid:95721 Search in Google Scholar

Sjölund, K., Sandén, G., Håkanson, R., Sundler, F. (1983). Endocrine cells in human intestine: an immunocytochemical study. Gastroenterology 85(5): 1120-1130. https://doi.org/10.1016/S0016-5085(83)80080-8 PMid:6194039 Search in Google Scholar

Buffa, R., Capella, C., Fontana, P., Usellini, L., Solcia, E. (1978). Types of endocrine cells in the human colon and rectum. Cell Tissue Res. 192(2): 227-240. https://doi.org/10.1007/BF00220741 PMid:699014 Search in Google Scholar

Modlin, I.M., Kidd, M., Pfragner, R., Eick, G.N., Champaneria, M.C. (2006). The f unctional characterization of normal and neoplastic human enterochromaffin cells. J Clin Endocrinol Metab. 91(6): 2340-2348. https://doi.org/10.1210/jc.2006-0110 PMid:16537680 Search in Google Scholar

Cooke, H.J., (2000). Neurotransmitters in neuronal reflexes regulating intestinal secretion. Ann N Y Acad Sci. 915, 77-80. https://doi.org/10.1111/j.1749-6632.2000.tb05225.x PMid:11193603 Search in Google Scholar

Brown, D.R. (1996). Mucosal protection through active intestinal secretion: neural and paracrine modulation by 5-hydroxytryptamine. Behav Brain Res. 73(1-2): 193-197. https://doi.org/10.1016/0166-4328(96)00095-2 PMid:8788501 Search in Google Scholar

Townsend, D., Casey, M.A., Brown, D.R. (2005). Mediation of neurogenic ion transport by acetylcholine, prostanoids and 5-hydroxytryptamine in porcine ileum. Eur J Pharmacol. 519(3): 285-289. https://doi.org/10.1016/j.ejphar.2005.07.023 PMid:16135363 PMCid:PMC4277208 Search in Google Scholar

Säfsten, B., Sjöblom, M., Flemström, G. (2006). Serotonin increases protective duodenal bicarbonate secretion via enteric ganglia and a 5-HT4-dependent pathway. Scand J Gastroenterol. 41(11): 1279-1289. https://doi.org/10.1080/00365520600641480 PMid:17060121 Search in Google Scholar

Sörensson, J., Jodal, M., Lundgren, O. (2001). Involvement of nerves and calcium channels in the intestinal response to Clostridium difficile toxin A: an experimental study in rats in vivo. Gut 49(1): 56-65. https://doi.org/10.1136/gut.49.1.56 PMid:11413111 PMCid:PMC1728359 Search in Google Scholar

Kordasti, S., Sjövall, H., Lundgren, O., Svensson, L. (2004). Serotonin and vasoactive intestinal peptide antagonists attenuate rotavir us diar rhoea. Gut 53(7): 952-957. https://doi.org/10.1136/gut.2003.033563 PMid:15194642 PMCid:PMC1774112 Search in Google Scholar

Pal, P.K., Sarkar, S., Chattopadhyay, A., Tan, D.X., Bandyopadhyay, D. (2019). Enterochromaffin cells as the souce of melatonin: Key findings and functional relevance in mammals. Melatonin Res. 2(4): 61-82. https://doi.org/10.32794/mr11250041 Search in Google Scholar

Reiter, R.J., Tan, D.X., Mayo, J.C., Sainz, R.M., Leon, J., Bandyopadhyay, D. (2003). Neurally-mediated and neurally-independent benef icial actions of melatonin in the gastrointestinal tract. J Physiol Pharmacol. 54(Suppl 4): 113-125. Search in Google Scholar

Brookes, S.J., Steele, P.A., Costa, M. (1991). Calretinin immunoreactivity in cholinergic motor neurones, interneurones and vasomotor neurones in the guinea-pig small intestine. Cell Tissue Res. 263(3): 471-481. https://doi.org/10.1007/BF00327280 PMid:1715238 Search in Google Scholar

Galligan, J.J., Costa, M., Furness, J.B. (1988). Changes in surviving nerve fibers associated with submucosal arteries following extrinsic denervation of the small intestine. Cell Tissue Res. 253(3): 647-656. https://doi.org/10.1007/BF00219756 PMid:3180190 Search in Google Scholar

Vanner, S. (2000). Myenteric neurons activate submucosal vasodilator neurons in guinea pig ileum. Am J Physiol Gastrointest Liver Physiol. 279(2): G380-387. https://doi.org/10.1152/ajpgi.2000.279.2.G380 PMid:10915648 Search in Google Scholar

Round, A., Wallis, D.I. (1987). Further studies on the blockade of 5-HT depolarizations of rabbit vagal afferent and sympathetic ganglion cells by MDL 72222 and other antagonists. Neuropharmacology 26(1): 39-48. https://doi.org/10.1016/0028-3908(87)90042-6 PMid:3561718 Search in Google Scholar

Hillsley, K., Grundy, D. (1998). Sensitivity to 5-hydroxytr yptamine in different afferent subpopulations within mesenteric nerves supplying the rat jejunum. J Physiol. 509(Pt 3): 717-727. https://doi.org/10.1111/j.1469-7793.1998.717bm.x PMid:9596794 PMCid:PMC2230991 Search in Google Scholar

Glatzle, J., Sternini, C., Robin, C., Zittel, T.T., Wong, H., Reeve, J.R. Jr, Raybould, H.E. (2002). Expression of 5-HT3 receptors in the rat gastrointestinal tract. Gastroenterology 123(1): 217-226. https://doi.org/10.1053/gast.2002.34245 PMid:12105850 Search in Google Scholar

Zhu, J.X., Zhu, X.Y., Owyang, C., Li, Y. (2001). Intestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the rat. J Physiol. 530(Pt 3): 431-442. Retraction in: J Physiol. 2023 May; 601(10): 2047. https://doi.org/10.1111/j.1469-7793.2001.0431k.x PMid:11158274 PMCid:PMC2278417 Search in Google Scholar

eISSN:
1857-7415
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Medicine, Basic Medical Science, Veterinary Medicine