Cite

Duo, Y., Luo, G., Li, Z., Chen, Z., Li X., Jiang, Z., … & Yu, X.-F. (2021). Photothermal and Enhanced Photocatalytic Therapies Conduce to Synergistic Anticancer Phototherapy with Biodegradable Titanium Diselenide Nanosheets. Small, 17 (40). DOI:10.1002/smll.202103239Search in Google Scholar

Han, G. H., Duong, D. L., Keum, D. H., Yun, S. J., & Lee, Y. H. (2018). Van der Waals Metallic Transition Metal Dichalcogenides. Chem Rev., 118 (13), 6297–6336. DOI:10.1021/acs.chemrev.7b00618Search in Google Scholar

Goli, P., Khan, J., Wickramaratne, D., Lake, R.K., & Balandin, A.A. (2012). Charge Density Waves in Exfoliated Films of van der Waals Materials: Evolution of Raman Spectrum in TiSe2. Nano Lett., 12 (11), 5941–5945. DOI:10.1021/nl303365xSearch in Google Scholar

Gu, Y., Katsura, Y., Yoshino, T., Takagi, H., & Taniguchi, K. (2015). Rechargeable Magnesium-Ion Battery Based on a TiSe2-Cathode with d-p Orbital Hybridized Electronic Structure. Sci Rep., 5. DOI:10.1038/srep12486Search in Google Scholar

Zhang, D., Zhao, G., Li, P., Zhang, Y., Qiu, W., Shu, J. … & Sun. W. (2018). Readily Exfoliated TiSe2 Nanosheets for High-Performance Sodium Storage. Chemistry – A European Journal, 24 (5), 1193–1197. DOI:10.1002/chem.201704661Search in Google Scholar

Wen, L., Wu, Y., Wang, S., Shi, J., Zhang, Q., Zhao, B., … & Gao, Y. (2022). A Novel TiSe2 (De)Intercalation Type Anode for Aqueous Zinc-Based Energy Storage. Nano Energy, 93, 106896. DOI:10.1016/j. nanoen.2021.106896Search in Google Scholar

Duong, D.L., Ryu, G., Hoyear, A., Lin, C., Burghard, M., & Kern, K. (2017). Raman Characterization of the Charge Density Wave Phase of 1T-TiSe2: From Bulk to Atomically Thin Layers. ACS Nano,11 (1), 1034–1040. DOI:10.1021/acsnano.6b07737Search in Google Scholar

Lian, C., Zhang, S.J., Hu, S.Q., Guan, M.X., & Meng, S. (2020). Ultrafast Charge Ordering by Self-Amplified Exciton– Phonon Dynamics in TiSe2. Nat Commun., 11 (1). DOI:10.1038/s41467-019-13672-7Search in Google Scholar

Yu, W., Li, J., Herng, T.S., Wang, Z., Zhao, X., Chi, X., … & Loh, K. P. (2019). Chemically Exfoliated VSe2 Monolayers with Room-Temperature Ferromagnetism. Advanced Materials, 31 (40). DOI:10.1002/adma.201903779Search in Google Scholar

Li, F., Tu, K., & Chen, Z. (2014). Versatile Electronic Properties of VSe2 Bulk, Few-Layers, Monolayer, Nanoribbons, and Nanotubes: A Computational Exploration. Journal of Physical Chemistry C, 118 (36), 21264–21274. doi:10.1021/jp507093tOpen DOISearch in Google Scholar

Snow, C. S., Karpus, J. F., Cooper, S. L., Kidd, T. E., & Chiang, T. C. (2003). Quantum Melting of the Charge-Density-Wave State in 1T-TiSe2. Phys Rev Lett., 91 (13), 1364021–1364024. DOI:10.1103/physrevlett.91.136402Search in Google Scholar

Kolekar, S., Bonilla, M., Ma, Y., Diaz, H. C., & Batzill, M. (2018). Layer- and Substrate-Dependent Charge Density Wave Criticality in 1T-TiSe2. 2d Mater., 5 (1). DOI:10.1088/2053-1583/aa8e6fSearch in Google Scholar

Zhu, X., Cao, Y., Zhang, J., Plummer, E. W., & Guo, J. (2015). Classification of Charge Density Waves Based on their Nature. Proc Natl Acad Sci U S A, 112 (8), 2367–2371. DOI:10.1073/pnas.1424791112Search in Google Scholar

Rossnagel, K. (2011). On the Origin of Charge-Density Waves in Select Layered Transition-Metal Dichalcogenides. Journal of Physics Condensed Matter, 23 (21). DOI:10.1088/0953-8984/23/21/213001Search in Google Scholar

Feng, J., Biswas, D., Rajan, A., Watson, M. D., Mazzola, F., Clark, O. J., … & King, P. D. C. (2018). Electronic Structure and Enhanced Charge-Density Wave Order of Monolayer VSe2. Nano Lett., 18 (7), 4493–4499. DOI:10.1021/acs.nanolett.8b01649Search in Google Scholar

Sugawara, K., Nakata, Y., Shimizu, R., Han, P., Hitosugi, T., Sato, T., & Takahashi, T. (2016). Unconventional Charge-Density-Wave Transition in Monolayer 1T-TiSe2. ACS Nano, 10 (1), 1341–1345. DOI:10.1021/acsnano.5b06727Search in Google Scholar

Wang, H., Chen, Y., Duchamp, M., Zeng, Q., Wang, X., Tsang, S. H., … & Liu, Z. (2018). Large-Area Atomic Layers of the Charge-Density-Wave Conductor TiSe2. Advanced Materials, 30 (8). DOI:10.1002/adma.201704382Search in Google Scholar

Chen, P., Chan, Y.-H., Fang, X.-Y., Chou, M. Y., Mo, S.-K., Hussain, Z., … & Chiang, T.-C. (2015). Charge Density Wave Transition in Single-Layer Titanium Diselenide. Nat Commun., 6, 8943. DOI:10.1038/ncomms9943Search in Google Scholar

Chen, P., Chan, Y.-H., Wong, M.-H., Fang, X.-Y., Chou, M. Y., Mo., S.-K., … & Chiang, T.-C. (2016). Dimensional Effects on the Charge Density Waves in Ultrathin Films of TiSe2. Nano Lett., 16 (10), 6331–6336. DOI:10.1021/acs.nanolett.6b02710Search in Google Scholar

Otto, M. R., Pöhls, J. H., René de Cotret L. P., Stern, M. J., Sutton, M., & Siwick, B. J. (2021). Mechanisms of Electron-Phonon Coupling Unraveled in Momentum and Time: The Case of Soft Phonons in TiSe 2. Science Advances, 7 (20). http://advances.sciencemag.org/Search in Google Scholar

Kumar, A., Sharma, R., Yadav, S., Swami, S. K., Kumari, R., Singh, V. N., … & Sinha, O. P. (2021). A Study on Chemical Exfoliation and Structural and Optical Properties of Two-Dimensional Layered Titanium Diselenide. Dalton Transactions, 50 (11), 3894–3903. DOI:10.1039/d0dt03689gSearch in Google Scholar

Luo, H., Krizan, J. W., Seibel, E. M., Xie, W., Sahasrabudhe, G. S., Bergman, S. L., … & Cava, R. J. (2015). Cr-Doped TiSe2 – A Layered Dichalcogenide Spin Glass. Chemistry of Materials, 27 (19), 6810–6817. DOI:10.1021/acs.chemmater.5b03091Search in Google Scholar

Peng, J. P., Guan, J.-Q., Zhang, H.-M., Song, C.-L., Wang, L., He, K., … & Ma, Z.-C.. (2015). Molecular Beam Epitaxy Growth and Scanning Tunneling Microscopy Study of TiSe2 Ultrathin Films. Phys Rev B Condens Matter Mater Phys., 91 (12). DOI:10.1103/PhysRevB.91.121113Search in Google Scholar

Liao, M., Wang, H., Zhu, Y., Shang, R., Rafique, M., Yang, L., … & Xue, Q.-K. (2021). Coexistence of Resistance Oscillations and the Anomalous Metal Phase in a Lithium Intercalated TiSe2 Superconductor. Nat Commun., 12 (1). DOI:10.1038/s41467-021-25671-8Search in Google Scholar

Sree Raj, K. A., Shajahan, A. S., Chakraborty, B., & Rout, C. S. (2020). Two-Dimensional Layered Metallic VSe2/SWCNTs/rGO Based Ternary Hybrid Materials for High Performance Energy Storage Applications. Chemistry - A European Journal, 26 (29), 6662–6669. DOI:10.1002/chem.202000243Search in Google Scholar

Ming, F., Liang, H., Lei, Y., Zhang, W., & Alshareef, H. N. (2018). Solution Synthesis of VSe2 Nanosheets and their Alkali Metal Ion Storage Performance. Nano Energy, 53, 11–16. DOI:10.1016/j.nanoen.2018.08.035Search in Google Scholar

Oliveira, C. C., & Autreto P. A. (2023). Optimized 2D Nanostructures for Catalysis of Hydrogen Evolution Reactions. MRS Advances, 8 (6), 307–310. DOI:10.1557/s43580-023-00549-7Search in Google Scholar

Yan M., Pan, X., Wang, P., Chen, F., He, L., Jiang, G., … & Mai, L. (2017). Field-Effect Tuned Adsorption Dynamics of VSe2 Nanosheets for Enhanced Hydrogen Evolution Reaction. Nano Lett., 17 (7), 4109-4115. DOI:10.1021/acs.nanolett.7b00855Search in Google Scholar

Yan, M., Pan, X., Wang, P., Chen, F., He, L., Jiang, G., ... & Mai, L. (2017). Field-Effect Tuned Adsorption Dynamics of VSe2 Nanosheets for Enhanced Hydrogen Evolution Reaction. Nano Letters, 17 (7), 4109-4115. DOI: 10.1021/acs.nanolett.7b00855Search in Google Scholar

Fu, J., Ali, R., Mu, C., Liu, Y., Mahmood, N., Lau, W.-M., & Jian, X. (2021). Large-Scale Preparation of 2D VSe2 through a Defect-Engineering Approach for Efficient Hydrogen Evolution Reaction. Chemical Engineering Journal, 411, 128494. DOI:10.1016/j.cej.2021.128494Search in Google Scholar

Song, Z., Yi, J., Qi, J., Zheng, Q., Zhu, Z., Tao, L. …, & Gao, H.-J. (2022). Line Defects in Monolayer TiSe2 with Adsorption of Pt Atoms Potentially Enable Excellent Catalytic Activity. Nano Res., 15 (5), 4687–4692. DOI:10.1007/s12274-021-4002-ySearch in Google Scholar

Toh, R. J., Sofer, Z., & Pumera, M. (2016). Catalytic Properties of Group 4 Transition Metal Dichalcogenides (MX2; M = Ti, Zr, Hf; X = S, Se, Te). J Mater Chem A Mater., 4 (47), 18322–18334. DOI:10.1039/c6ta08089hSearch in Google Scholar

Huang, H. H., Fan, X., Singh, D. J., & Zheng, W. T. (2020). Recent Progress of TMD Nanomaterials: Phase Transitions and Applications. Nanoscale, 12 (3), 1247–1268. DOI:10.1039/c9nr08313hSearch in Google Scholar

Chowdhury, T., Sadler, E. C., & Kempa, T. J. Progress and Prospects in Transition-Metal Dichalcogenide Research beyond 2D. Chem Rev., 120 (22), 12563–12591. DOI:10.1021/acs.chemrev.0c00505Search in Google Scholar

Chhowalla, M., Liu, Z., & Zhang, H. (2015). Two-dimensional Transition Metal Dichalcogenide (TMD) Nanosheets. Chem Soc Rev., 44 (9), 2584–2586. DOI:10.1039/c5cs90037aSearch in Google Scholar

Pasquier, D., & Yazyev, O. V. (2018). Excitonic Effects in Two-dimensional TiSe2 from Hybrid Density Functional Theory. Phys Rev B., 98 (23). DOI:10.1103/PhysRevB.98.235106Search in Google Scholar

Kadiwala, K., Butanovs, E., Ogurcovs, A., Zubkins, M., & Polyakov, B. (2022). Comparative Study of WSe2 Thin Films Synthesized via Pre-deposited WO3 and W Precursor Material Selenization. J Cryst Growth., 593. DOI:10.1016/j. jcrysgro.2022.126764Search in Google Scholar

Kwak, T., Lee, J., So, B., Choi, U., & Nam, O. (2019). Growth Behavior of Wafer-Scale Two-dimensional MoS 2 Layer Growth Using Metal-Organic Chemical Vapor Deposition. J Cryst Growth, 510, 50–55. DOI:10.1016/j.jcrysgro.2019.01.020Search in Google Scholar

Xue, Y., Zhang, Y., Wang, H., Lin, S., Li, Y., Dai, J.-Y., & Lau, S. P. (2020). Thickness-Dependent Magnetotransport Properties in 1T VSe2 Single Crystals Prepared by Chemical Vapor Deposition. Nanotechnology, 31 (14), 145712. DOI:10.1088/1361-6528/ab6478Search in Google Scholar

eISSN:
2255-8896
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics