Open Access

Economical Valuation of Wave Power Plant in the Baltic Sea Region at Pre-Flexibility Stage


Cite

1. Real Time World Statistic. (n.d.). Available at https://www.worldometers.info/world-population/Search in Google Scholar

2. World Energy Consumption Since 1820 in Charts. (n.d.). Available at https://ourfiniteworld.com/2012/03/12/world-energy-consumption-since-1820-in-charts/Search in Google Scholar

3. Renewable Energy Statistics. (n.d.). Available at https://ec.europa.eu/eurostat/statistics-explained/index.php/Renewable_energy_statistics#Renewable_energy_produced_in_the_EU_increased_by_two_thirds_in_2007-2017Search in Google Scholar

4. Communication from the commission to the european parliament, the council, the european economic and social committee and the committee of the reģions: Energy 2020. A strategy for competitive, sustainable and secure energy [COM(2010)639]. Available at https://ec.europa.eu/energy/en/topics/energy-strategy-and-energy-union/2020-energy-strategy.Search in Google Scholar

5. Global Energy ---amp--- CO2 Status Report (2018). The Latest Trends in Energy and Emissions in 2018. Available at https://www.iea.org/geco/emissions/.Search in Google Scholar

6. NASA Earth Observatory. (n.d.). Available at https://earthobservatory.nasa.gov/world-of-change/DecadalTempSearch in Google Scholar

7. Tapio, P., Varho, V., ---amp--- Heino, H. (2013). Renewable Energy in the Baltic Sea Region 2025. Journal of East-West Business, 19, 47–62. 10.1080/10669868.2013.779544.10.1080/10669868.2013.779544Search in Google Scholar

8. Thomas, J., Barve, K.H., Dwarakish, G., ---amp--- Ranganath, L. (2015). A Review on Assessment of Wave Energy Potential. In National Conference on Futuristic Technology in Civil Engineering for Sustainable Development (178–186), 9 May 2015, Department of Civil Engineering, SJBIT.Search in Google Scholar

9. Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S.....---amp--- von Stechow, C (2010). Special Report of the Intergovernmental Panel on Climate Change IPPC. Renewable Energy Sources and Climate Change Mitigation. United Kingdom and New York: Cambridge University Press.10.1017/CBO9781139151153Search in Google Scholar

10. ETIPOCEAN (n.d.). Ocean Energy Statistics 2018: Europe Leading the Sector. Available at https://www.etipocean.eu/news/ocean-energy-statistics-2019/Search in Google Scholar

11. IRENA (2014). Wave Energy: Technology Brief. Available at https://www.irena.org/publications/2014/Jun/Wave-energySearch in Google Scholar

12. Rusu, E., ---amp--- Onea, F. (2018). A Review of the Technologies for Wave Energy Extraction. Clean Energy, 1. 10.1093/ce/zky003.10.1093/ce/zky003Search in Google Scholar

13. Magagna, D., ---amp--- Uihlein, A. (2015). Ocean Energy Development in Europe: Current Status and Future Perspectives. International Journal of Marine Energy, 11, 84–104. https://doi.org/10.1016/j.ijome.2015.05.001.10.1016/j.ijome.2015.05.001Search in Google Scholar

14. Melo AB (2010). Pico Power Plant: Perspectives for the Future? Available at http://www.picoowc.net/files/33/new3_84d9ee44e457ddef7f2c4f25dc8fa865.pdf.Search in Google Scholar

15. Ocean Energy Systems (2016). Annual Report Ocean Energy Systems 2016. Available at https://report2016.ocean-energy-systems.org/Search in Google Scholar

16. ETIPOCEAN (n.d.). EU-funded Ocean Energy Projects Framework Programme 7 ---amp--- Horizon2020. Available at https://www.etipocean.eu/assets/Uploads/170418-EU-funded-projects.pdfSearch in Google Scholar

17. Ingmarsson, P., ---amp--- Hüffmeier, J. (2019). 2030 and 2050 Baltic Sea Energy Scenarios – Ocean Energy. RISE Research Institutes of Sweden, Swedish Agency for Marine and Water Management.Search in Google Scholar

18. Soomere, T., ---amp--- Eelsalu, M. (2014). On the Wave Energy Potential along the Eastern Baltic Sea coast. Renewable Energy: An International Journal, 71, 221–233.10.1016/j.renene.2014.05.025Search in Google Scholar

19. Mørk, G., Barstow, S., Kabuth, A., ---amp--- Pontes, M. (2010). Assessing the Global Wave Energy Potential. In ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. Shanghai, China. 3. 10.1115/OMAE2010-20473.10.1115/OMAE2010-20473Search in Google Scholar

20. European Commission (n.d.). EU Strategy for the Baltic Sea Region. Available at https://ec.europa.eu/regional_policy/lv/policy/cooperation/macro-regional-strategies/baltic-sea/Search in Google Scholar

21. Avotiņš, A., Greivulis, J., ---amp--- Kalniņš, L. (2008). Baltijas jūras potenciāls viļņa enerģijas pārveidošanai. Enerģētika un elektrotehnika, 23, 213–224.Search in Google Scholar

22. Jakabson, P. (2011). Mapping and Assessment of the United States Ocean. Wave Energy Electric Power Research Institute, Technical report.Search in Google Scholar

23. Beriņš, J., Beriņš, J., ---amp--- Kalnačs, A. (2016). Wave Energy Potential in the Latvian EEZ. Latvian Journal of Physics and Technical Sciences, 3, 22–23.10.1515/lpts-2016-0018Search in Google Scholar

24. Radziņš, Z., ---amp--- Zars, V. (1964). Hidrauliskās mašīnas un mehānismi. Latvijas Valsts izdevniecība.Search in Google Scholar

25. National Date Buoy Centre (n.d.). Measurement Description and Units. Available at http://www.ndbc.noaa.gov/measdes.shtmlSearch in Google Scholar

26. MK noteikumi. Nr.779 (17.08.2010.). Noteikumi par bāzes līniju punktu koordinātēm.Search in Google Scholar

27. Beriņš, J. (2019). Ocean and Marine Energy Options and Development. Doctoral Thesis. Available at https://ortus.rtu.lv/science/lv/publications/29289Search in Google Scholar

28. Beriņš, J., ---amp--- Beriņš, J. (2017). New Hydrokinetic Turbine for Free Surface Gravitational Wave Transformation. Latvian Journal of Physics and Technical Sciences, 6, 32–41.10.1515/lpts-2017-0039Search in Google Scholar

29. Betz, A. (1966). Introduction to the theory of flow machines. NY: Pergamon Press.Search in Google Scholar

30. Powell, W. B., ---amp--- Miesel, S. (2018). Tutorial on Stochastic Optimisation in Energy-Part II: An Energy Storage Illustration. IEEE Trans. Power Syst., 31(2), 1468–1475.10.1109/TPWRS.2015.2424980Search in Google Scholar

31. Petrichenko, R., Baltputnis, K., Sauhats, A., ---amp--- Soboļevskis, D. (2017). District Heating Demand Short-Term Forecasting. In 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I---amp---CPS Europe), (pp. 1374–1378). 6–9 June 2017, Italy, Milan. 10.1109/EEEIC.2017.7977633.10.1109/EEEIC.2017.7977633Search in Google Scholar

32. Sauhats, A., Petrichenko, R., Broka, Z., Baltputnis, K., ---amp--- Soboļevskis, D. (2016). ANN-Based Forecasting of Hydropower Reservoir Inflow. In 57th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON 2016), 13–14 October 2016, Latvia, Riga. 10.1109/RTUCON.2016.7763129. Electronic ISBN: 978-1-5090-3731-5, USB ISBN: 978-1-5090-3730-810.1109/RTUCON.2016.7763129Search in Google Scholar

33. Petrichenko, Ļ., Sauhats, A., Petričenko, R., ---amp--- Bezrukovs, D. (2018). Long-Term Price Forecasting for the Cost-Benefit Analysis of Power Equipment. In 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University, 12–14 November 2018, Latvia, Riga. 10.1109/RTUCON.2018.8659888. Electronic ISBN: 978-1-5386-6903-7, USB ISBN: 978-1-5386-6902-010.1109/RTUCON.2018.8659888Search in Google Scholar

34. Sauhats, A., Zemīte, L., Petrichenko, Ļ., Moškins, I., ---amp--- Jasevičs, A. (2018). Estimating the Economic Impacts of Net Metering Schemes for Residential PV Systems with Profiling of Power Demand, Generation, and Market Prices. Energies, 11(11), 1–19. 10.3390/en11113222.10.3390/en11113222Search in Google Scholar

35. Energolukss (n.d.). Generators. Available at https://www.energolukss.lv/shop/product/generators-sdmo-diesel-15000-te-xl-c-10kw-riteni-9349?category=8.Search in Google Scholar

eISSN:
2255-8896
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics