Open Access

The Control Principles of the Wind Energy Based DC Microgrid


Cite

1. Suskis, P., & Rankis, I. (2012). Buck-boost DC-DC converter for wind and hydrogen based autonomous energy supply system. Biennial Baltic Electronics Conference (BEC) 2012, 215–218.10.1109/BEC.2012.6376855Search in Google Scholar

2. Koutroulis, E., & Kalaitzakis, K. (2006). Design of a maximum power tracking system for wind-energy-conversion applications. IEEE Transactions on Industrial Electronics, 53(2), 486–494.10.1109/TIE.2006.870658Search in Google Scholar

3. Eltamaly, A.M., Alolah, A.I., & Farh, H.M. (2013). Maximum power extraction from utility-interfaced wind turbines. New Developments in Renewable Energy. InTech, 159–192.Search in Google Scholar

4. Wang, Q., & Chang, L. (2004). An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems. IEEE Transactions on Power Electronics, 19(5), 1242–1249.10.1109/TPEL.2004.833459Open DOISearch in Google Scholar

5. Graillot, A. (2009). Hybrid micro grids for rural electrification: Developing appropriate technology. AIE Event, 41.Search in Google Scholar

6. Karlsson, P. (2002). DC distributed power systems. Lund University, 148.Search in Google Scholar

7. Laudani, G.A., & Mitcheson, P.D. Comparison of cost and efficiency of DC versus AC in office buildings. Transformation of the Top and Tail of Energy Networks, London.Search in Google Scholar

8. Deaconu, D., Chirila, A., Albu, M., & Toma, L. (2007). Studies on a LV DC network. European Conference on Power Electronics and Applications, 1–7.10.1109/EPE.2007.4417634Search in Google Scholar

9. Sannino, A., Postiglione, G., & Bollen, M. H. J. (2003). Feasibility of a DC network for commercial facilities. IEEE Transactions on Industry Applications, 39(5), 1499–1507.10.1109/TIA.2003.816517Open DOISearch in Google Scholar

10. Hammerstrom, D. J. (2007). AC versus DC distribution systems-did we get it right? IEEE Power Engineering Society General Meeting, 1–5.10.1109/PES.2007.386130Search in Google Scholar

11. Kwasinski, A. (2012). Micro-grids architectures, stability and protections. Available at http://users.ece.utexas.edu/~kwasinski/EE394J10_DG_stability%20architecture%20comp.pptSearch in Google Scholar

12. Zaleskis, G., Steiks, I., Pumpurs, A., & Krievs, O. (2015). DC-AC Converter for Load Supply in Autonomous Wind-Hydrogen Power System. In 56th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), 14 October 2015 (pp. 169–173). Riga: RTU Press.Search in Google Scholar

13. Pellicciari, M., Avotins, A., Bengtsson, K., & Meike, D. (2015). AREUS – Innovative hardware and software for sustainable industrial robotics. IEEE Conference on Automation Science and Engineering, 2015, 1325–1332.10.1109/CoASE.2015.7294282Search in Google Scholar

14. Camm, E.H., Behnke, M.R., Bolado, O., Walling, R. (2009). Characteristics of wind turbine generators for wind power plants. University of Tennessee, 1–5.10.1109/PES.2009.5275330Search in Google Scholar

15. Rashid, M.H. (2001). Power electronics handbook. San Diego, California: Academic Press.Search in Google Scholar

16. Meike, D. (2013). Increasing energy efficiency of robotized production systems in automobile manufacturing. Ph.D. Thesis. Riga: Riga Technical University.Search in Google Scholar

17. Latvian National standardisation institution “Latvijas Standarts”. (2012). LVS EN 60038:2012 “CENELEC standard voltages”.Search in Google Scholar

18. Suskis, P., & Rankis, I. (2012). Performance of a voltage step-up/step-down transformerless dc/dc converter: Analytical model. Latvian Journal of Physics and Technical Sciences, 49(4), 29–40.10.2478/v10047-012-0021-5Search in Google Scholar

19. Suskis, P. (2013). DC/DC voltage h-bridge converter for autonomous hydrogen system with fuzzy logic. The 54th International Scientific Conference of Riga Technical University, 1–4.Search in Google Scholar

20. Zaleskis, G. (2017). Research of the automation tasks of the wind generators in the low-power microgrids. Ph.D. Thesis (in Latvian). Riga: Riga Technical University.Search in Google Scholar

eISSN:
0868-8257
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics