Open Access

STRUCTURAL CHANGES IN PULSED LASER ABLATED CuInSe2 COMPOUND STRUKTURĀLĀS IZMAIŅAS IMPULSA LĀZERA ABLĒTAJĀ CuInSe2 SAVIENOJUMĀ


Cite

1. Wyatt, K. Metzger, Ingrid, L. Repins, & Miguel, A. Contreras (2008). Long lifetimes in high efficiency Cu(In,Ga)Se2 solar cells. Appl. Phys. Lett., 93, 022110.Search in Google Scholar

2. Rega, N., Siebentritt, S., Albert, J., Nishiwaki, S., Zajogin, A., Lux-Steiner, M. C., Kniese, R., & Romero, M. J. (2005). Excitonic luminescence of Cu(In,Ga) Se-2. Thin Solid Films, 480, 286-290.10.1016/j.tsf.2004.11.079Search in Google Scholar

3. Green, M. A., Emery, K., Hishikawa, Y., Warta, W., & Dunlop, E. D. (2012). Solar cell efficiency tables (version 39) Prog. Photovolt Res. Appl., 20, 12-20.10.1002/pip.2163Search in Google Scholar

4. Thornton, J.A., Lommasson, T.C., Talieh, H., &Tseng, B.H. (1988). Reactive sputtered CuInSe2. Solar Cells. 24, P.1-9.10.1016/0379-6787(88)90030-0Search in Google Scholar

5. Guillenmoles, J.F., Lusson, A., Cowache, P., Massaccesi, S., Vedel, J., & Lincot, D. (1994). Recrystallization of electrodeposited copper indium diselenide thin films in an atmosphere of elemental selenium.Adv. Mater., 6, 376.Search in Google Scholar

6. Guillenmoles, J.F., Cowache, P., Lusson, A., Fezzaa, K., Boisivon, F., Vedel, J., & Lincot, D. (1996). One step electrodeposition of CuInSe2: Improved structural, electronic, and photovoltaic properties by annealing under high selenium pressure. J.Appl. Phys.,79, 7293.Search in Google Scholar

7. Gabor, A.M., Tuttle, J.R., Albin, D.S., Contreras, M.A., Noufi, R.,& Hermann, A.M. (1994). High‐efficiency CuInxGa1−xSe2 solar cells made from (Inx,Ga1−x)2Se3 precursor films. Appl. Phys. Lett., 65, 198.Search in Google Scholar

8. Castro, S.L., Bailey, S.G., Raffaelle, R.P., Banger, K.K., & Hepp, A.F. (2003). Nanocrystalline chalcopyrite materials (CuInS2 and CuInSe2) via low-temperature pyrolysis of molecular single-source precursors. Chem. Mater. 15, 3142.10.1021/cm034161oSearch in Google Scholar

9. Gardner, J.S., Shurdha, E., Wang, C., Lau, L., Rodriguez, R.G., & Pak, J.J. (2008). Rapid synthesis and size control of CuInS2 semi-conductor nanoparticles using microwave irradiation J. Nanopart. Res. 10, 633.10.1007/s11051-007-9294-7Search in Google Scholar

10. Bensebaa, F., Durand, C., Aouadou, A., Scoles, L., Du, X., Wang, D., & Le Page, Y. (2010). A new green synthesis method of CuInS2 and CuInSe2 nanoparticles and their integration into thin films. J. Nanopart. Res. 12, 1897.10.1007/s11051-009-9752-5Search in Google Scholar

11. Fujiwara, H., Yanagida, S., & Kamat, PV. (1999). Visible laser induced fusion and fragmentation of thionicotinamide-capped gold nanoparticles. J. Phys. Chem. B. 103, 2589-2591.10.1021/jp984429cSearch in Google Scholar

12. Hodak, J. H., Henglein, A., Giersig, M. & Hartland, G. V. (2000). Laser-induced inter-diffusion in AuAg core-shell nanoparticles. J. Phys. Chem. B 104, 11708.10.1021/jp002438rSearch in Google Scholar

13. Ya-Huey Yeh, Ming-Shin Yeh, Yi-Pei Lee, and Chen-Sheng Yeh. (1998). Formation of Cu nanoparticles from CuO powder by laser ablation in 2-Propanol. Chemistry Letters, 1183-1184.10.1246/cl.1998.1183Search in Google Scholar

14. Anne HAHN, Stephan BARCIKOWSKI & Boris N. CHICHKOV. (2008). Influences on nanoparticle production during pulsed laser ablation. JLMN-Journal of Laser Micro/Nanoengineering, 3, (2).10.2961/jlmn.2008.02.0003Search in Google Scholar

15. Hermann, J., Benfarah, M., Coustillier, G., Bruneau, S., Axente, E., Guillemoles, J.-F. Sentis, M., Alloncle, P., & Itina T. (2005). Selective ablation of thin films with short and ultrashort laser pulses. Applied Surface Science, 252 (13).Search in Google Scholar

16. Mohamed Boutinguiza, Rafael Comesaña, Fernando Lusquiños, Antonio Riveiro, & Juan Pou (2011). Production of nanoparticles from natural hydroxylapatite by laser ablation. Nanoscale Research Letter, 6, 255.10.1186/1556-276X-6-255Search in Google Scholar

17. Park, H.K., & Haglund, R.F. (1997). Laser ablation and desorption from calcite from ultraviolet to mid-infrared wavelengths. Appl. Phys. A., 64, 431-438.10.1007/s003390050501Search in Google Scholar

18. Chen, Y., Bulatov, V., Singer, L., Stricker, J., & Schechter, I. (2005). Mapping and elemental fractionation of aerosols generated by laser-induced breakdown ablation. Anal. Bioanal. Chem., 383, 1090-1097.10.1007/s00216-005-0126-2Search in Google Scholar

19. Kotaidis, V., Dahmen, C., & Von Plessen, G. (2006). Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water. J. Chem Phys., 124, 184702.10.1063/1.2187476Search in Google Scholar

20. Kotaidis, V., & Plech, A. (2005). Cavitation dynamics on the nanoscale. Appl Phys Lett., 87, 213102.10.1063/1.2132086Search in Google Scholar

21. Miotello, A., & Kelly R. (1999). Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature. Appl. Phys. A. Mater. Sci. Process, 69A, S67-S73.Search in Google Scholar

22. Kelly, R., & Miotello, A. (1999). Contribution of vaporization and boiling to thermal-spike sputtering by ions or laser pulses. Phys Rev E., 60, 2616-2625.10.1103/PhysRevE.60.2616Search in Google Scholar

23. Zhigilei, L.V., & Garrison, B.J. (1999). Molecular dynamics simulation study of the fluence dependence of particle yield and plume composition in laser desorption and ablation of organic solids. Appl Phys Lett., 74, 1341-1343.10.1063/1.123544Search in Google Scholar

24. Zhigilei, L.V., Kodali, PBS., & Garrison, B.J. (1997). On the threshold behavior in the laser ablation of organic solids. Chem Phys Lett., 276, 269-273.10.1016/S0009-2614(97)00808-7Search in Google Scholar

25. Paltauf, G., & Dyer, P.E. (2003). Photomechanical processes and effects in ablation. Chem. Rev., 103, 487-518. 10.1021/cr010436c12580640Search in Google Scholar

ISSN:
0868-8257
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics