Cite

[1] Mašek, J., Kendra, M., Milinkovič, S., Veskovič, S. & Barta, D. (2015). Proposal and application of methodology of revitalisation of regional railway track in Slovakia and Serbia. Part 1: Theoretical approach and proposal of methodology for revitalisation of regional railways. Transport Problems, 2015, 85-95.10.21307/tp-2015-064Search in Google Scholar

[2] Grenčík, J., Poprocký, R., Galliková, J. & Volna, P. (2018). Use of risk assessment methods in maintenance for more reliable rolling stock operation. MATEC Web of Conferences, 157, DOI: 10.1051/matecconf/201815704002.10.1051/matecconf/201815704002Open DOISearch in Google Scholar

[3] Melnik, R. & Sowinski, B. (2013). Application of the rail vehicle’s monitoring system in the process of suspension condition assessment. Komunikacie, 15(4), 3-8.10.26552/com.C.2013.4.3-8Search in Google Scholar

[4] Chudzikiewicz, A., Bogacz, R. & Kostrzewski, M. (2014). Using acceleration signals recorded on a railway vehicle wheelsets for rail track condition monitoring. In 7th European Workshop on Structural Health Monitoring: EWSHM 2014 - 2nd European Conference of the Prognostics and Health Management (PHM) Society2014, 8-11 July 2014 (167-174). Nantes, France.Search in Google Scholar

[5] Suchánek, A., Harušinec, J., Loulová, M. & Strážovec, P. (2018). Analysis of the distribution of temperature fields in the braked railway wheel. MATEC Web of Conference, 157. DOI: 10.1015/2fmatecconf/2f2018.15702048.10.1015/2fmatecconf/2f2018.15702048Open DOISearch in Google Scholar

[6] Ližbetin, J., Vejs, P., Stopka, O. & Cempírek, V. (2016). The significance of dynamic detection of the railway vehicles weight. Nase More, 63(3), 156-160.10.17818/NM/2016/SI15Search in Google Scholar

[7] Gerlici, J., Lack, T. & Harusinec, J. (2014). Realistic simulation of railway operation on the RAILBCOT test stand. Applied Mechanics and Materials, 486, 387-395. DOI: 10.4028/www.scientific.net/AMM.486.387.10.4028/www.scientific.net/AMM.486.387Open DOISearch in Google Scholar

[8] Nangolo, N.F. & Klimenda, F. (2014). System identification for underdamped mechanical systems. In EAN 2014: 52nd International Conference on Experimental Stress Analysis, 2-5 June 2014, Marianske Lazne, Czech Republic.Search in Google Scholar

[9] Hren, I., Hejma, P., Michna, S., Svoboda, M. & Soukup, J. (2018). Analysis of torque cam mechanism. MATEC Web of Conference, 157, DOI: 10.1051/matecconf/201815706004.10.1051/matecconf/201815706004Open DOISearch in Google Scholar

[10] Šťastniak, P., Smetanka, L. & Moravčík, M. (2017). Development of modern railway bogie for broad track gauge - bogie frame assessment. Manufacturing Technology, 17(2), 250-256.10.21062/ujep/x.2017/a/1213-2489/MT/17/2/250Search in Google Scholar

[11] Hauser, V., Nozhenko, O., Kravchenko, K., Loulova, M., Gerlici, J. & Lack, T. (2017). Impact of three boxes bogie to tram behaviour when passing curved track. Procedia Engineering, 192, 295-300. DOI: 10.1016/j.proeng.2017.06.051.10.1016/j.proeng.2017.06.051Open DOISearch in Google Scholar

[12] Kostrzewski, M. & Melnik, R. (2017). Numerical dynamics study of a rail vehicle with differential gears. Procedia Engineering, 192, 439-444. DOI: 10.1016/j.proeng.2017.06.076.10.1016/j.proeng.2017.06.076Open DOISearch in Google Scholar

[13] Bogdevičius, M. & Žygiene, R. (2017). Research of System Vehicle-track when Wheel is Scaled. Procedia Engineering, 187, 599-603. DOI: 10.1016/2fj.proeng.2017.04.419.10.1016/2fj.proeng.2017.04.419Open DOISearch in Google Scholar

[14] Brizuela, J., Fritsch, C. & Ibanez, A. (2011). Railway wheel-flat detection and measurement by ultrasound. Transportation Research Part C, 19, 978-984. DOI: 10.1016/j.trc.2011.04.004.10.1016/j.trc.2011.04.004Open DOISearch in Google Scholar

[15] Lack, T. & Gerlici, J. (2014). A modified strip method to speed up the calculation of normal stress between wheel and rail. Applied Mechanics and Materials, 486, 359-370. DOI: 10.4028/2fwww.scientific.net/2fAMM.486.359.10.4028/2fwww.scientific.net/2fAMM.486.359Open DOISearch in Google Scholar

[16] Lack, T. & Gerlici, J. (2015): The FASTSIM method modification to speed up the calculation of tangencial contact stressess between wheel and rail. Manufacturing Technology, 13(4), 486-492.10.21062/ujep/x.2013/a/1213-2489/MT/13/4/486Search in Google Scholar

[17] Mazilu, T. (2007). A dynamic model for the impact between the wheel flat and rail. UPB Scientific Bulletin, Series D: Mechanical Engineering, 69(2), 45-58.Search in Google Scholar

[18] Bogdevičius, M., Žygiene, R., Dailydka, S., Bartulis, V., Skrickij, V. & Pukalskas, S. (2015). The dynamic behaviour of a wheel flat of a railway vehicle and rail irregularities. Transport, 30(2), 217-232. DOI: 10.3846/2f16484142.2015.1051108.10.3846/2f16484142.2015.1051108Open DOISearch in Google Scholar

[19] UIC CODE 518. (2009). Testing and approval of railway vehicles from the point of view of their dynamic behaviour - Safety - Track fatigue - Running behaviour. September 2009. Paris, France.Search in Google Scholar

[20] Pawelczyk, M., Piotr, L. & Podsiadlo, R. (2015). Simulation study of the 4-axle wagon damaging impact on the track caused by some deformations of the wheel. In Current Problems in Rail Vehicles - PRORAIL 2015: 22nd International Conference, 16-18 September 2015 (115-124), Žilina, Slovakia.Search in Google Scholar

[21] Steenbergen, M.J.M.M. (2008). Wheel-rail interaction at short-wave irregularities. Delft: Wöhrmann Print Service, Zutphen.Search in Google Scholar

eISSN:
2336-3037
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Business and Economics, Business Management, Industries, Transportation, Logistics, Air Traffic, Shipping