Cite

1. Chen F.; Liu X.: Progress in Polymer Science Advancing biomaterials of human origin for tissue engineering. Progress in Polymer Science2016, 53 (1), 86–168.10.1016/j.progpolymsci.2015.02.004480805927022202Search in Google Scholar

2. Oriňaková R.; Gorejová R.; Králová Orságová Z.; Oriňak A.; Maskaľová I.; Kupková M.; Baláž M.; Hrubovčáková M.; Sopčák T.; Zubrik A.; Oriňak M.: Evaluation of Mechanical Properties and Hemocompatibility of Open Cell Iron Foams with Polyethylene Glycol Coating. Applied Surface Sciience2019, 144 634.10.1016/j.apsusc.2019.144634Search in Google Scholar

3. Navarro M.; Michiardi A.; Castan O.; Planell J. A. Biomaterials in orthopaedics. Journal of the Royal Society Interface2008, 5, 1137–1158.10.1098/rsif.2008.0151270604718667387Search in Google Scholar

4. Datta L. P.; Manchineella S.; Govindaraju T.: Biomolecules-derived Biomaterials. Biomaterials2019, 119 633.10.1016/j.biomaterials.2019.11963331831221Search in Google Scholar

5. Oriňakova R.; Gorejová R.; Macko J.; Oriňak A.; Kupková M.; Hrubovčakova M.; Ševc J.; Smith R.M.: Evaluation of in vitro biocompatibility of open cell iron structures with PEG coating. Applied Surface Science2019, 475, 515–518.Search in Google Scholar

6. Park, J.; Lakes, R. S. Biomaterials, 3rd ed.; Springer-Verlag New York: New York, 2007.Search in Google Scholar

7. Binyamin, G.; Shafi, B.; Mery, C.: Biomaterials: A primer for surgeons. Chitin-Chitosan: Myriad Functionalities in Science and Technology; 2006; 276–283.10.1053/j.sempedsurg.2006.07.00717055958Search in Google Scholar

8. Nawrat, Z.: Review of Research in Cardiovascular Devices. Review of Handbook of Polymer Applications in Medicine and Medical Devices; 2009; 145–189.10.1016/B978-0-323-22805-3.00008-6Search in Google Scholar

9. Tabraiz S.; Ansari A.Q.; Urooj S.; Aldobali M.: A Review based on Coronary Biodegradable and Bioabsorbable Stents for Artery Disease Coronary. Procedia Computer Science2019, 152, 354–359.Search in Google Scholar

10. Prajapati S.K.; Jain A.; Jain S.; Tirth B.; College P. Bio-degradable polymers and constructs: A novel approach in drug delivery. European Polymer Journal2019, 109 191.10.1016/j.eurpolymj.2019.08.018Search in Google Scholar

11. Jiang T.; Duan Q.; Zhu J.; Liu L.; Yu L.: Starch-based Biodegradable Materials: Challenges and Opportunities. Advanced Industrial Engeneering and Polymer Research2019.10.1016/j.aiepr.2019.11.003Search in Google Scholar

12. Linsley C.; Li X.; North S.M.E.; Guan Z.; Pan S.; Linsley C.; Li X.: Manufacturing and Characterization of as Potential Biodegradable Material. Procedia Manufacturing2019, 34, 247–251.Search in Google Scholar

13. Zheng Y. F.; Gu X. N.; Witte F.: Biodegradable metals. Material Science and Engeneering R2014, 77, 1–34.Search in Google Scholar

14. Hermawan H.; Purnama A.; Dube D.; Couet J.; Mantovani D.: Fe–Mn alloys for metallic biodegradable stents: Degradation and cell viability studies. Acta Biomaterialia2010, 6, 1852–1860.Search in Google Scholar

15. Shreyas P.; Panda B.; Kumar R.: Materials Today: Proceedings Mechanical properties and microstructure of 316L- galvanized steel weld. Materials Today: Proceeding2019 5–12.10.1016/j.matpr.2019.05.418Search in Google Scholar

16. Dehghan-Manshadi A.; St John D.H.; Dargusch M.S.: Tensile Properties and Fracture Behaviour of Biodegradable Iron-Manganese Scaffolds Produced by Powder Sintering. Materials2019,12, 157210.3390/ma12101572656615631091657Search in Google Scholar

17. Dargusch M.S.; Dehghan-Manshadi A.; Shahbazi M.; Venezuela J.; Tran X.; Song J.; Liu N.; Xu C.; Ye Q. S.; Wen C. E.: Exploring the Role of Manganese on the Microstructure, Mechanical Properties, Biodegradability, and Biocompatibility of Porous Iron-Based Scaffolds. Acs Biomaterials Science & Engineering2019, 5, 1686-170210.1021/acsbiomaterials.8b0149733405546Search in Google Scholar

18. Pustov, Y.A.; Zhukova, Y.S.; Malikova, P.E.; Prokoshkin, S.D.; Dubinskii, S.M.: Structure and Corrosion-Electro-chemical Behavior of Bioresorbable Alloys Based on the Fe-Mn System. Prot. Met. Phys. Chem. Surf.2018, 54, 469-476.Search in Google Scholar

19. Hong D.; Chou D. T.; Velikokhatnyi O. I.; Roy A.; Lee B.; Swink I.; Issaev I.; Kuhn H.A.; Kumta P.N.: Binder-Jetting 3D Printing and Alloy Development of New Biodegradable Fe–Mn–Ca/Mg Alloys. Acta Biomaterialia2016, 45, 375-386.Search in Google Scholar

20. Hermawan H.; Dubé D.; Mantovani D.: Degradable Metallic Biomaterials: Design and Development of Fe–Mn Alloys for Stents. J Biomed Mater Res A2010, 93A, 1-11.10.1002/jbm.a.3222419437432Search in Google Scholar

21. Donik Č.; Kocijan A.; Paulin I.; Hočevar M.; Gregorčič P.; Godec M.: Improved Biodegradability of Fe–Mn Alloy After Modification of Surface Chemistry and Topography by a Laser Ablation. Applied Surface Science2018, 453, 383-393.Search in Google Scholar

22. Shuai C. Li S.; Peng S.; Feng P.; Lai Y.; Gao C.: Biodegradable Metallic Bone Implants. Mater Chem Front2019, 3, 544-562.Search in Google Scholar

23. Drynda A.; Hassel T.; Bach F. W.; Peuster M.: In Vitro and In Vivo Corrosion Properties of New Iron–Manganese Alloys Designed for Cardiovascular Applications. J Bio Mat Res B2014, 103, 649-660.Search in Google Scholar

24. Campos N.; Gierl-mayer C.; Oro R.; Torralba M.; Danninger H.: New Alloying Systems for Sintered Steels: Critical Aspects of Sintering Behavior. Metallurgical and Materials Transaction2015, 46, 1349–1359.Search in Google Scholar

25. Berkowitz B.; Ewing R.P.: Percolation Theory and Network Modelling Application in Soil Physics. Surveys in Geophysics1998, 19, 23-72.Search in Google Scholar

26. Balberg I.: Recent Developments in Continuum Percolation, Philosophical Magazine B1987, 56, 991-1003.10.1080/13642818708215336Search in Google Scholar

27. Kupková M.; Hrubovčáková M.; Zeleňák A.; Sułowski M.; Ciaś A.; Oriňáková R.; Morovská Turoňová A.; Žáková K.; Kupka, M.: Dimensional Changes, Microstructure, Microhardness Distributions And Corrosion Properties Of Iron And Iron-Manganese Sintered Materials. Archives of Metallurgy and Materials2015, 60 (2), 639–642.10.1515/amm-2015-0185Search in Google Scholar

eISSN:
1804-1213
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Chemical Engineering, Materials Sciences, Ceramics and Glass