Open Access

Corrosion behaviour of the titanium beta alloy nanotubular surface in the presence of fluoride ions


Cite

1. Zhang, L.; Webster, T. J., Nanotechnology and nano-materials: Promises for improved tissue regeneration. Nano Today2009, 4 (1), 66-80.10.1016/j.nantod.2008.10.014Search in Google Scholar

2. Niinomi, M., Recent research and development in titanium alloys for biomedical applications and health-care goods. Science and Technology of Advanced Materials2003, 4 (5), 445-454.10.1016/j.stam.2003.09.002Search in Google Scholar

3. Elias, C. N., Biomedical Applications of Titanium and its Alloys. Biological Materials Science2008.Search in Google Scholar

4. Guillemot, F., Recent advances in the design of titanium alloys for orthopedic applications. Expert Review of Medical Devices2005, 2 (6), 741-748.10.1586/17434440.2.6.741Search in Google Scholar

5. Bahraminasab, M., et al., Aseptic loosening of femoral components – Materials engineering and design considerations. Materials & Design2013, 44, 155-163.10.1016/j.matdes.2012.07.066Search in Google Scholar

6. Bahraminasab, M., et al., Aseptic loosening of femoral components – A review of current and future trends in materials used. Materials & Design2012, 42, 459-470.10.1016/j.matdes.2012.05.046Search in Google Scholar

7. Okulov, I. V., et al., Composition optimization of low modulus and high-strength TiNb-based alloys for biomedical applications. J. Mech. Behav. Biomed. Mater. 2017, 65, 866-871.10.1016/j.jmbbm.2016.10.013Search in Google Scholar

8. Malek, J., et al., The effect of Zr on the microstructure and properties of Ti-35Nb-XZr alloy. Mat. Sci. Eng. a-Struct.2016, 675, 1-10.10.1016/j.msea.2016.07.069Search in Google Scholar

9. Eisenbarth, E., et al., Biocompatibility of beta -stabilizing elements of titanium alloys. Biomaterials2004, 25 (26), 5705-5713.10.1016/j.biomaterials.2004.01.021Search in Google Scholar

10. Cao, W.; Hench, L. L., Bioactive materials. Ceramics International1996, 22 (6), 493-507.10.1016/0272-8842(95)00126-3Search in Google Scholar

11. Oh, S.; Jin, S., Titanium oxide nanotubes with controlled morphology for enhanced bone growth. Materials Science & Engineering, C: Biomimetic and Supramolecular Systems2006, 26 (8), 1301-1306.10.1016/j.msec.2005.08.014Search in Google Scholar

12. Oh, S.-H., et al., Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials2005, 26 (24), 4938-4943.10.1016/j.biomaterials.2005.01.04815769528Search in Google Scholar

13. Ghicov, A.; Schmuki, P., Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem Commun2009, (20), 2791-2808.10.1039/b822726h19436878Search in Google Scholar

14. Regonini, D., et al., A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mat. Sci. Eng. R.2013, 74 (12), 377-406.10.1016/j.mser.2013.10.001Search in Google Scholar

15. Tsuchiya, H., et al., Nanotube oxide coating on Ti-29Nb-13Ta-4.6Zr alloy prepared by self-organizing anodization. Electrochimica Acta2006, 52 (1), 94-101.10.1016/j.electacta.2006.03.087Search in Google Scholar

16. Jang, S.-H., et al., Electrochemical characteristics of nano-tubes formed on Ti-Nb alloys. Thin Solid Films2009, 517 (17), 5038-5043.10.1016/j.tsf.2009.03.166Search in Google Scholar

17. Kim, J.-U., et al., Morphology of hydroxyapatite coated nanotube surface of Ti–35Nb–xHf alloys for implant materials. Thin Solid Films2011, 520 (2), 793-799.10.1016/j.tsf.2011.04.169Search in Google Scholar

18. Campanelli, L. C., et al., Effect of an amorphous titania nanotubes coating on the fatigue and corrosion behaviors of the biomedical Ti-6Al-4V and Ti-6Al-7Nb alloys. J. Mech. Behav. Biomed. Mater.2017, 65, 542-551.10.1016/j.jmbbm.2016.09.015Search in Google Scholar

19. Grotberg, J., et al., Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V. Materials science & engineering. C, Materials for biological applications2016, 59, 677-89.10.1016/j.msec.2015.10.056Search in Google Scholar

20. Rafieerad, A. R., et al., Toward improved mechanical, tribological, corrosion and in-vitro bioactivity properties of mixed oxide nanotubes on Ti–6Al–7Nb implant using multi-objective PSO. Journal of the Mechanical Behavior of Biomedical Materials2017, 69, 1-18.10.1016/j.jmbbm.2016.11.019Search in Google Scholar

21. Hilario, F., et al., Influence of morphology and crystalline structure of TiO2 nanotubes on their electrochemical properties and apatite-forming ability. Electrochimica Acta2017, 245, 337-349.10.1016/j.electacta.2017.05.160Search in Google Scholar

22. Yu, W.-q., et al., In vitro corrosion study of different TiO2 nanotube layers on titanium in solution with serum proteins. Colloids and Surfaces B: Biointerfaces2011, 84 (2), 400-405.10.1016/j.colsurfb.2011.01.033Search in Google Scholar

23. Jang, S.-H., et al., Electrochemical characteristics of nano-tubes formed on Ti–Nb alloys. Thin Solid Films2009, 517 (17), 5038-5043.10.1016/j.tsf.2009.03.166Search in Google Scholar

24. Kim, W.-G.; Choe, H.-C., Nanostructure and corrosion be- haviors of nanotube formed Ti-Zr alloy. Transactions of Non- ferrous Metals Society of China2009, 19 (4), 1005-1008.10.1016/S1003-6326(08)60396-9Search in Google Scholar

25. Fojt, J., et al., Electrochemical behaviour of the nanostructured surface of Ti-35Nb-2Zr alloy for biomedical applications. Materials and Corrosion2016, 67 (9), 915-920.10.1002/maco.201508766Search in Google Scholar

26. Fovet, Y., et al., Influence of pH and fluoride concentration on titanium passivating layer: stability of titanium dioxide. Talanta2001, 53 (5), 1053-1063.10.1016/S0039-9140(00)00592-0Search in Google Scholar

27. Nakagawa, M., et al., Effect of fluoride concentration and pH on corrosion behavior of titanium for dental use. Journal of dental research1999, 78 (9), 1568-1572.10.1177/00220345990780091201Search in Google Scholar

28. Reclaru, L.; Meyer, J. M., Effects of fluorides on titanium and other dental alloys in dentistry. Biomaterials1998, 19 (1-3), 85-92.10.1016/S0142-9612(97)00179-8Search in Google Scholar

29. Robin, A.; Meirelis, J. P., Influence of fluoride concentration and pH on corrosion behavior of Ti-6Al-4V and Ti-23Ta alloys in artificial saliva. Materials and Corrosion2007, 58 (3), 173-180.10.1002/maco.200604004Search in Google Scholar

30. Fojt, J., et al., On the increasing of adhesive strength of nanotube layers on beta titanium alloys for medical applications. Applied Surface Science2015, 355, 52-58.10.1016/j.apsusc.2015.07.074Search in Google Scholar

31. Kar, A., et al., Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications. Surface and Coatings Technology2006, 201 (6), 3723-3731.10.1016/j.surfcoat.2006.09.008Search in Google Scholar

32. Huang, H.-H.; Lee, T.-H., Electrochemical impedance spectroscopy study of Ti-6Al-4V alloy in artificial saliva with fluoride and/or bovine albumin. Dental Materials2005, 21 (8), 749-755.10.1016/j.dental.2005.01.00915878783Search in Google Scholar

33. Joska, L.; Fojt, J., Corrosion behaviour of titanium after short-term exposure to an acidic environment containing fluoride ions. Journal of Materials Science: Materials in Medicine2010, 21, 8.10.1007/s10856-009-3930-y19921403Search in Google Scholar

34. Duarte, L. T., et al., Surface characterization of oxides grown on the Ti–13Nb–13Zr alloy and their corrosion protection. Corrosion Science2013, 72, 35-40.10.1016/j.corsci.2013.02.007Search in Google Scholar

35. Calderon Moreno, J. M., et al., Surface and electrochemical characterization of a new ternary titanium based alloy behaviour in electrolytes of varying pH. Corrosion Science2013, 77, 52-63.10.1016/j.corsci.2013.07.026Search in Google Scholar

36. Vasilescu, C., et al., Surface analysis and corrosion resistance of a new titanium base alloy in simulated body fluids. Corrosion Science2012, 65, 431-440.10.1016/j.corsci.2012.08.042Search in Google Scholar

37. Barsoukov, E.; MacDonald, R., Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd Edition. 2005; p 608 pp.10.1002/0471716243Search in Google Scholar

38. Bojinov, M., et al., Evidence of coupling between film growth and metal dissolution in passivation processes. Electrochimica Acta2003, 48 (28), 4107-4117.10.1016/S0013-4686(03)00578-4Search in Google Scholar

39. Ibris, N.; Mirza Rosca, J. C., EIS study of Ti and its alloys in biological media. Journal of Electroanalytical Chemistry2002, 526 (1-2), 53-62.10.1016/S0022-0728(02)00814-8Search in Google Scholar

40. Bojinov, M., The ability of a surface charge approach to describe barrier film growth on tungsten in acidic solutions. Electrochimica Acta1997, 42 (23–24), 3489-3498.10.1016/S0013-4686(97)00037-6Search in Google Scholar

41. Córdoba-Torres, P., et al., Electrochemical impedance analysis of TiO2 nanotube porous layers based on an alter- native representation of impedance data. Journal of Electroanalytical Chemistry2015, 737, 54-64.10.1016/j.jelechem.2014.06.034Search in Google Scholar

42. Mohan, L., et al., Electrochemical behaviour and bioactivity of self-organized TiO2 nanotube arrays on Ti-6Al-4V in Hanks’ solution for biomedical applications. Electro-chimica Acta2015, 155, 411-420.10.1016/j.electacta.2014.12.032Search in Google Scholar

43. Mohan, L., et al., Electrochemical behavior and effect of heat treatment on morphology, crystalline structure of self-organized TiO2 nanotube arrays on Ti-6Al-7Nb for biomedical applications. Materials science & engineering. C, Materials for biological applications2015, 50, 394-401.10.1016/j.msec.2015.02.01325746285Search in Google Scholar

44. Fojt, J., Ti–6Al–4V alloy surface modification for medical applications. Applied Surface Science 2012, 262, 163-167.10.1016/j.apsusc.2012.04.012Search in Google Scholar

45. Munirathinam, B., et al., Influence of crystallite size and surface morphology on electrochemical properties of annealed TiO2 nanotubes. Applied Surface Science2015, 355, 1245-1253.10.1016/j.apsusc.2015.08.017Search in Google Scholar

eISSN:
1804-1213
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Chemical Engineering, Materials Sciences, Ceramics and Glass