Open Access

Attempts at the development of a recombinant African swine fever virus strain with abrogated EP402R, 9GL, and A238L gene structure using the CRISPR/Cas9 system


Cite

Abrams C.C., Dixon L.K.: Sequential deletion of genes from the African swine fever virus genome using the cre/loxP recombination system. Virology 2012, 433, 142–148, doi: 10.1016/j.virol.2012.07.021.AbramsC.C.DixonL.K.Sequential deletion of genes from the African swine fever virus genome using the cre/loxP recombination systemVirology201243314214810.1016/j.virol.2012.07.021Open DOISearch in Google Scholar

Barasona J.A., Gallardo C., Cadenas-Fernández E., Jurado C., Rivera B., Rodríguez-Bertos A., Arias M., Sánchez-Vizcaíno J.M.: First oral vaccination of Eurasian wild boar against African swine fever virus genotype II. Front Vet Sci 2019, 6, 1–10, doi: 10.3389/fvets.2019.00137.BarasonaJ.A.GallardoC.Cadenas-FernándezE.JuradoC.RiveraB.Rodríguez-BertosA.AriasM.Sánchez-VizcaínoJ.M.First oral vaccination of Eurasian wild boar against African swine fever virus genotype IIFront Vet Sci2019611010.3389/fvets.2019.00137Open DOISearch in Google Scholar

Borca M.V., Carrillo C., Zsak L., Laegreid W.W., Kutish G.F., Neilan J.G., Burrage T.G., Rock D.L.: Deletion of a CD2-like gene, 8-DR, from African swine fever virus affects viral infection in domestic swine. J Virol 1998, 72, 2881–2889.BorcaM.V.CarrilloC.ZsakL.LaegreidW.W.KutishG.F.NeilanJ.G.BurrageT.G.RockD.L.Deletion of a CD2-like gene, 8-DR, from African swine fever virus affects viral infection in domestic swineJ Virol1998722881288910.1128/JVI.72.4.2881-2889.1998Search in Google Scholar

Borca M.V., Holinka L.G., Berggren K.A., Gladue D.P.: CRISPR-Cas9, a tool to efficiently increase the development of recombinant African swine fever viruses. Sci Rep 2018, 8, 3154, doi: 10.1038/s41598-018-21575-8.BorcaM.V.HolinkaL.G.BerggrenK.A.GladueD.P.CRISPR-Cas9, a tool to efficiently increase the development of recombinant African swine fever virusesSci Rep20188315410.1038/s41598-018-21575-8Open DOISearch in Google Scholar

Cortiñas Abrahantes J., Gogin A., Richardson J., Gervelmeyer A.: Epidemiological analyses on African swine fever in the Baltic countries and Poland. EFSA J 2017, 15, 4732, doi: 10.2903/j.efsa.2017.4732.CortiñasAbrahantes J.GoginA.RichardsonJ.GervelmeyerA.Epidemiological analyses on African swine fever in the Baltic countries and PolandEFSA J201715473210.2903/j.efsa.2017.4732Open DOISearch in Google Scholar

de León P., Bustos M.J., Carrascosa A.L.: Laboratory methods to study African swine fever virus. Virus Res 2013, 173, 168–179, doi: 10.1016/j.virusres.2012.09.013.de LeónP.BustosM.J.CarrascosaA.L.Laboratory methods to study African swine fever virusVirus Res201317316817910.1016/j.virusres.2012.09.013Open DOISearch in Google Scholar

Dixon L.K., Abrams C.C., Bowick G., Goatley L.C., Kay-Jackson P.C., Chapman D., Liverani E., Nix R., Silk R., Zhang F.: African swine fever virus proteins involved in evading host defence systems. Vet Immunol Immunopathol 2004, 100, 117–134, doi: 10.1016/j.vetimm.2004.04.002.DixonL.K.AbramsC.C.BowickG.GoatleyL.C.Kay-JacksonP.C.ChapmanD.LiveraniE.NixR.SilkR.ZhangF.African swine fever virus proteins involved in evading host defence systemsVet Immunol Immunopathol200410011713410.1016/j.vetimm.2004.04.002Open DOISearch in Google Scholar

Dixon L.K., Sun H., Roberts H.: African swine fever. Antiviral Res 2019, 165, 34–41, doi: 10.1016/j.antiviral.2019.02.018.DixonL.K.SunH.RobertsH.African swine feverAntiviral Res2019165344110.1016/j.antiviral.2019.02.018Open DOISearch in Google Scholar

EFSA AHAW Panel: Scientific opinion on African swine fever. EFSA J 2015, 13, 4163, doi: 10.2903/j.efsa.2015.416.EFSA AHAW Panel: Scientific opinion on African swine feverEFSA J201513416310.2903/j.efsa.2015.416Open DOISearch in Google Scholar

Fernández-Pinero J., Gallardo C., Elizalde M., Robles A., Gómez C., Bishop R., Heath L., Couacy-Hymann E., Fasina F.O., Pelayo V., Soler A., Arias M.: Molecular diagnosis of African swine fever by a new real-time PCR using universal probe library. Transbound Emerg Dis 2013, 60, 48–58, doi: 10.1111/j.1865-1682.2012.01317.Fernández-PineroJ.GallardoC.ElizaldeM.RoblesA.GómezC.BishopR.HeathL.Couacy-HymannE.FasinaF.O.PelayoV.SolerA.AriasM.Molecular diagnosis of African swine fever by a new real-time PCR using universal probe libraryTransbound Emerg Dis201360485810.1111/j.1865-1682.2012.01317Open DOISearch in Google Scholar

Gallardo C., Soler A., Rodze I., Nieto R., Cano-Gómez C., Fernández-Pinero J., Arias M.: Attenuated and non-haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017. Transbound Emerg Dis 2019, 66, 1399–1404, doi: 10.1111/tbed.13132.GallardoC.SolerA.RodzeI.NietoR.Cano-GómezC.Fernández-PineroJ.AriasM.Attenuated and non-haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017Transbound Emerg Dis2019661399140410.1111/tbed.13132Open DOISearch in Google Scholar

Gómez-Puertas P., Rodríguez F., Oviedo J.M., Brun A., Alonso C., Escribano J.M.: The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response. Virology 1998, 243, 461–471, doi: 10.1006/viro.1998.9068.Gómez-PuertasP.RodríguezF.OviedoJ.M.BrunA.AlonsoC.EscribanoJ.M.The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune responseVirology199824346147110.1006/viro.1998.9068Open DOISearch in Google Scholar

Hübner A., Petersen B., Keil G.M., Niemann H., Mettenleiter T.C., Fuchs W.: Efficient inhibition of African swine fever virus replication by CRISPR/Cas9 targeting of the viral p30 gene (CP204L). Sci Rep 2018, 8, 1449, doi: 10.1038/s41598-018-19626-1.HübnerA.PetersenB.KeilG.M.NiemannH.MettenleiterT.C.FuchsW.Efficient inhibition of African swine fever virus replication by CRISPR/Cas9 targeting of the viral p30 gene (CP204L)Sci Rep20188144910.1038/s41598-018-19626-1Open DOISearch in Google Scholar

Jurado C., Martínez-Avilés M., De La Torre A., Štukelj M., de Carvalho Ferreira H.C., Cerioli M., Sánchez-Vizcaíno J.M., Bellini S.: Relevant measures to prevent the spread of African swine fever in the European Union domestic pig sector. Front Vet Sci 2018, 5, doi: 10.3389/fvets.2018.00077.JuradoC.Martínez-AvilésM.De LaTorre A.ŠtukeljM.de CarvalhoFerreira H.C.CerioliM.Sánchez-VizcaínoJ.M.BelliniS.Relevant measures to prevent the spread of African swine fever in the European Union domestic pig sectorFront Vet Sci2018510.3389/fvets.2018.00077Open DOISearch in Google Scholar

Juszkiewicz M., Walczak M., Woźniakowski G.: Characteristics of selected active substances used in disinfectants and their virucidal activity against ASFV. J Vet Res 2019, 63, 17–25, doi: 10.2478/jvetres-2019-0006.JuszkiewiczM.WalczakM.WoźniakowskiG.Characteristics of selected active substances used in disinfectants and their virucidal activity against ASFVJ Vet Res201963172510.2478/jvetres-2019-0006Open DOISearch in Google Scholar

Krug P.W., Holinka L.G., O’Donnell V., Reese B., Sanford B., Fernandez-Sainz I., Gladue D.P., Arzt J., Rodriguez L., Risatti G.R., Borca M.V.: The progressive adaptation of a Georgian isolate of African swine fever virus to Vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome. J Virol 2015, 89, 2324–2332, doi: 10.1128/JVI.03250-14.KrugP.W.HolinkaL.G.O’DonnellV.ReeseB.SanfordB.Fernandez-SainzI.GladueD.P.ArztJ.RodriguezL.RisattiG.R.BorcaM.V.The progressive adaptation of a Georgian isolate of African swine fever virus to Vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genomeJ Virol2015892324233210.1128/JVI.03250-14Open DOISearch in Google Scholar

Le Rhun A., Escalera-Maurer A., Bratovič M., Charpentier E.: CRISPR-Cas in Streptococcus pyogenes. RNA Biol 2019, 16, 380–389, doi: 10.1080/15476286.2019.1582974.Le RhunA.Escalera-MaurerA.BratovičM.CharpentierE.CRISPR-Cas in Streptococcus pyogenesRNA Biol20191638038910.1080/15476286.2019.1582974Open DOISearch in Google Scholar

Lee C.: CRISPR/Cas9-based antiviral strategy: current status and the potential challenge. Molecules 2019 24 (7), 1349, doi: 10.3390/molecules24071349.LeeC.CRISPR/Cas9-based antiviral strategy: current status and the potential challengeMolecules2019247134910.3390/molecules24071349Open DOISearch in Google Scholar

Lewis T., Zsak L., Burrage T.G., Lu Z., Kutish G.F., Neilan J.G.: An African swine fever virus ERV1-ALR homologue, 9GL, affects virion maturation and viral growth in macrophages and viral virulence in swine. J Virol 2000, 74, 1275–1285, doi: 10.1128/jvi.74.3.1275-1285.2000.LewisT.ZsakL.BurrageT.G.LuZ.KutishG.F.NeilanJ.G.An African swine fever virus ERV1-ALR homologue, 9GL, affects virion maturation and viral growth in macrophages and viral virulence in swineJ Virol2000741275128510.1128/jvi.74.3.1275-1285.2000Open DOISearch in Google Scholar

Mazur-Panasiuk N., Woźniakowski G., Niemczuk K.: The first complete genomic sequences of African swine fever virus isolated in Poland. Sci Rep 2019, 9, 4556, doi: 10.1038/s41598-018-36823-0.Mazur-PanasiukN.WoźniakowskiG.NiemczukK.The first complete genomic sequences of African swine fever virus isolated in PolandSci Rep20199455610.1038/s41598-018-36823-0Open DOISearch in Google Scholar

Monteagudo P.L., Lacasta A., López E., Bosch L., Collado J., Pina-Pedrero S., Correa-Fiz F., Accensi F., Navas M.J., Vidal E., Bustos M.J., Rodríguez J.M., Gallei A., Nikolin V., Salas M.L., Rodríguez F.: BA71ΔCD2: a new recombinant live attenuated African swine fever virus with cross-protective capabilities. J Virol 2017, 91:e01058-17, doi: 10.1128/JVI.01058-17.MonteagudoP.L.LacastaA.LópezE.BoschL.ColladoJ.Pina-PedreroS.Correa-FizF.AccensiF.NavasM.J.VidalE.BustosM.J.RodríguezJ.M.GalleiA.NikolinV.SalasM.L.RodríguezF.BA71ΔCD2: a new recombinant live attenuated African swine fever virus with cross-protective capabilitiesJ Virol201791e010581710.1128/JVI.01058-17Open DOISearch in Google Scholar

Neilan J., Zsak L., Lu Z., Burrage T., Kutish G., Rock D.: Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology 2004, 319, 337–342, doi: 10.1016/j.virol.2003.11.011.NeilanJ.ZsakL.LuZ.BurrageT.KutishG.RockD.Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protectionVirology200431933734210.1016/j.virol.2003.11.011Open DOISearch in Google Scholar

O’Donnell V., Holinka L.G., Gladue D.P., Sanford B., Krug P.W., Lu X., Arzt J., Reese B., Carillo C., Risatti G.R., Borca M.V.: African swine fever virus Georgia isolate harboring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus. J Virol 2015, 89, 6048–6056, doi: 10.1128/JVI.00554-15.O’DonnellV.HolinkaL.G.GladueD.P.SanfordB.KrugP.W.LuX.ArztJ.ReeseB.CarilloC.RisattiG.R.BorcaM.V.African swine fever virus Georgia isolate harboring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virusJ Virol2015896048605610.1128/JVI.00554-15Open DOISearch in Google Scholar

O’Donnell V., Holinka L.G., Krug P.W., Gladue D.P., Carlson J., Sanford B., Alfano M., Kramer E., Lu Z., Arzt J., Reese B., Carillo C., Risatti G.R., Borca M.V.: African swine fever virus Georgia 2007 with a deletion of virulence-associated gene 9GL (B119L), when administered at low doses, leads to virus attenuation in swine and induces an effective protection against homologous challenge. J Virol 2015, 89, 8556–8566, doi: 10.1128/JVI.00969-15.O’DonnellV.HolinkaL.G.KrugP.W.GladueD.P.CarlsonJ.SanfordB.AlfanoM.KramerE.LuZ.ArztJ.ReeseB.CarilloC.RisattiG.R.BorcaM.V.African swine fever virus Georgia 2007 with a deletion of virulence-associated gene 9GL (B119L), when administered at low doses, leads to virus attenuation in swine and induces an effective protection against homologous challengeJ Virol2015898556856610.1128/JVI.00969-15Open DOISearch in Google Scholar

O’Donnell V., Risatti G.R., Holinka L.G., Krug P.W., Carlson J., Velazquez-Salinas L., Azzinaro P.A., Gladue D.P., Borca M.V.: Simultaneous deletion of the 9GL and UK genes from the African swine fever virus Georgia 2007 isolate offers increased safety and protection against homologous challenge. J Virol 2017, 91, e01760-1, doi: 10.1128/JVI.01760-16.O’DonnellV.RisattiG.R.HolinkaL.G.KrugP.W.CarlsonJ.Velazquez-SalinasL.AzzinaroP.A.GladueD.P.BorcaM.V.Simultaneous deletion of the 9GL and UK genes from the African swine fever virus Georgia 2007 isolate offers increased safety and protection against homologous challengeJ Virol201791e01760110.1128/JVI.01760-16Open DOISearch in Google Scholar

Oura C.A.L., Denyer M.S., Takamatsu H., Parkhouse R.M.E.: In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. J Gen Virol 2005, 86, 2445–2450, doi: 10.1099/vir.0.81038-0.OuraC.A.L.DenyerM.S.TakamatsuH.ParkhouseR.M.E.In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virusJ Gen Virol2005862445245010.1099/vir.0.81038-0Open DOISearch in Google Scholar

Pejsak Z., Truszczyński M., Niemczuk K., Kozak E., Markowska-Daniel I.: Epidemiology of African swine fever in Poland since the detection of the first case. Pol J Vet Sci 2014, 17, 665–672, doi: 10.2478/pjvs-2014-009.PejsakZ.TruszczyńskiM.NiemczukK.KozakE.Markowska-DanielI.Epidemiology of African swine fever in Poland since the detection of the first casePol J Vet Sci20141766567210.2478/pjvs-2014-009Open DOISearch in Google Scholar

Reed L.J., Muench H.: A simple method of estimating fifty per cent endpoints. Am J Epidemiol 1938, 27, 493–497, doi: 10.1093/oxfordjournals.aje.a118408.ReedL.J.MuenchH.A simple method of estimating fifty per cent endpointsAm J Epidemiol19382749349710.1093/oxfordjournals.aje.a118408Open DOISearch in Google Scholar

Reis A.L., Netherton C., Dixon L.K.: Unraveling the armor of a killer: evasion of host defenses by African swine fever virus. J Virol 2017, 91, 6–11, doi: 10.1128/JVI.02338-16.ReisA.L.NethertonC.DixonL.K.Unraveling the armor of a killer: evasion of host defenses by African swine fever virusJ Virol20179161110.1128/JVI.02338-16Open DOISearch in Google Scholar

Sánchez E.G., Pérez-Núñez D., Revilla Y.: Development of vaccines against African swine fever virus. Virus Res 2019, 265, 150–155, doi: 10.1016/j.virusres.2019.03.022.SánchezE.G.Pérez-NúñezD.RevillaY.Development of vaccines against African swine fever virusVirus Res201926515015510.1016/j.virusres.2019.03.022Open DOISearch in Google Scholar

Sánchez E.G., Riera E., Nogal M., Gallardo C., Fernández P., Bello-Morales R., López-Guerrero J.A., Chitko-McKown C.G., Richt J.A., Revilla Y.: Phenotyping and susceptibility of established porcine cells lines to African swine fever virus infection and viral production. Sci Rep 2017, 7, 10369, doi: 10.1038/s41598-017-09948-x.SánchezE.G.RieraE.NogalM.GallardoC.FernándezP.Bello-MoralesR.López-GuerreroJ.A.Chitko-McKownC.G.RichtJ.A.RevillaY.Phenotyping and susceptibility of established porcine cells lines to African swine fever virus infection and viral productionSci Rep201771036910.1038/s41598-017-09948-xOpen DOISearch in Google Scholar

Śmietanka K., Woźniakowski G., Kozak E., Niemczuk K., Fraçzyk M., Bocian Ł.: African swine fever epidemic, Poland, 2014–2015. Emerg Infect Dis 2016, 22, 1201–1207, doi: 10.3201/eid2207.151708.ŚmietankaK.WoźniakowskiG.KozakE.NiemczukK.FraçzykM.BocianŁ.African swine fever epidemic, Poland, 2014–2015Emerg Infect Dis2016221201120710.3201/eid2207.151708Open DOISearch in Google Scholar

Takamatsu H.H., Denyer M.S., Lacasta A., Stirling C.M.A., Argilaguet J.M., Netherton C.L., Oura C.A.L., Nogueira Martins C.E., Rodríguez F.: Cellular immunity in ASFV responses. Virus Res 2013, 173, 110–121, doi: 10.1016/j.virusres.2012.11.009.TakamatsuH.H.DenyerM.S.LacastaA.StirlingC.M.A.ArgilaguetJ.M.NethertonC.L.OuraC.A.L.NogueiraMartins C.E.RodríguezF.Cellular immunity in ASFV responsesVirus Res201317311012110.1016/j.virusres.2012.11.009Open DOISearch in Google Scholar

Woźniakowski G., Kozak E., Kowalczyk A., Łyjak M., Pomorska-Mól M., Niemczuk K.: Current status of African swine fever virus in a population of wild boar in eastern Poland (2014–2015). Arch Virol 2016, 161, 189–195, doi: 10.1007/s00705-015-2650-5.WoźniakowskiG.KozakE.KowalczykA.ŁyjakM.Pomorska-MólM.NiemczukK.Current status of African swine fever virus in a population of wild boar in eastern Poland (2014–2015)Arch Virol201616118919510.1007/s00705-015-2650-5Open DOISearch in Google Scholar

Zani L., Forth J.H., Forth L., Nurmoja I., Leidenberger S., Henke J., Carlson J., Breidenstein C., Viltrop A., Höper D., Sauter-Louis C., Beer M., Blome S.: Deletion at the 5’-end of Estonian ASFV strains associated with an attenuated phenotype. Sci Rep 2018, 8, 6510, doi: 10.1038/s41598-018-24740-1.ZaniL.ForthJ.H.ForthL.NurmojaI.LeidenbergerS.HenkeJ.CarlsonJ.BreidensteinC.ViltropA.HöperD.Sauter-LouisC.BeerM.BlomeS.Deletion at the 5’-end of Estonian ASFV strains associated with an attenuated phenotypeSci Rep20188651010.1038/s41598-018-24740-1Open DOISearch in Google Scholar

eISSN:
2450-8608
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Microbiology and Virology, other, Medicine, Veterinary Medicine