Open Access

Analysis of Root System Architecture Affected by Swarming Behavior


Cite

Araya T., Kubo T., von Wirén N., Takahashi H. 2016. Statistical modeling of nitrogen-dependent modulation of root system architecture in Arabidopsis thaliana. Journal of Integrative Plant Biology 58(3): 254–265. DOI: 10.1111/jipb.12433.ArayaT.KuboT.von WirénN.TakahashiH.2016Statistical modeling of nitrogen-dependent modulation of root system architecture in Arabidopsis thalianaJournal of Integrative Plant Biology58325426510.1111/jipb.12433Open DOISearch in Google Scholar

Barlow P.W., Fisahn J. 2013. Swarms, swarming and entanglements of fungal hyphae and of plant roots. Communicative and Integrative Biology 6(5); e25299, 16 p. DOI: 10.4161/cib.25299.BarlowP.W.FisahnJ.2013Swarms, swarming and entanglements of fungal hyphae and of plant rootsCommunicative and Integrative Biology65e2529916 p.10.4161/cib.25299Open DOISearch in Google Scholar

Cassab G.I., Eapen D., Campos M.E. 2013. Root hydrotropism: An update. American Journal of Botany 100(1): 14–24. DOI: 10.3732/ajb.1200306.CassabG.I.EapenD.CamposM.E.2013Root hydrotropism: An updateAmerican Journal of Botany1001142410.3732/ajb.1200306Open DOISearch in Google Scholar

Ciszak M., Comparini D., Mazzolai B., Baluska F., Arecchi F.T., Vicsek T., Mancuso S. 2012. Swarming behavior in plant roots. PLoS One 7(1); e29759, 7 p. DOI: 10.1371/journal.pone.0029759.CiszakM.CompariniD.MazzolaiB.BaluskaF.ArecchiF.T.VicsekT.MancusoS.2012Swarming behavior in plant rootsPLoS One71e297597 p.10.1371/journal.pone.0029759Open DOISearch in Google Scholar

Couzin I. 2007. Collective minds. Nature 445(7129): 715. DOI: 10.1038/445715a.CouzinI.2007Collective mindsNature445712971510.1038/445715aOpen DOISearch in Google Scholar

Couzin I.D., Krause J., Franks N.R., Levin S.A. 2005. Effective leadership and decision-making in animal groups on the move. Nature 433(7025): 513–516. DOI: 10.1038/nature03236.CouzinI.D.KrauseJ.FranksN.R.LevinS.A.2005Effective leadership and decision-making in animal groups on the moveNature433702551351610.1038/nature03236Open DOISearch in Google Scholar

Diggle A.J. 1988. ROOTMAP – a model in three-dimensional coordinates of the growth and structure of fibrous root systems. Plant and Soil 105(2): 169–178. DOI: 10.1007/bf02376780.DiggleA.J.1988ROOTMAP – a model in three-dimensional coordinates of the growth and structure of fibrous root systemsPlant and Soil105216917810.1007/bf02376780Open DOISearch in Google Scholar

Dunbabin V.M., Postma J.A., Schnepf A., Pagès L., Javaux M., Wu L. et al. 2013. Modelling root–soil interactions using three-dimensional models of root growth, architecture and function. Plant and Soil 372(1–2): 93–124. DOI: 10.1007/s11104-013-1769-y.DunbabinV.M.PostmaJ.A.SchnepfA.PagèsL.JavauxM.WuL.2013Modelling root–soil interactions using three-dimensional models of root growth, architecture and functionPlant and Soil3721–29312410.1007/s11104-013-1769-yOpen DOISearch in Google Scholar

Giehl R.F.H., Lima J.E., von Wirén N. 2012. Localized iron supply triggers lateral root elongation in Arabidopsis by altering the AUX1-mediated auxin distribution. Plant Cell 24(1): 33–49. DOI: 10.1105/tpc.111.092973.GiehlR.F.H.LimaJ.E.von WirénN.2012Localized iron supply triggers lateral root elongation in Arabidopsis by altering the AUX1-mediated auxin distributionPlant Cell241334910.1105/tpc.111.092973Open DOISearch in Google Scholar

Gilroy S. 2008. Plant tropisms. Current Biology 18(7): R275–R277. DOI: 10.1016/j.cub.2008.02.033.GilroyS.2008Plant tropismsCurrent Biology187R275R27710.1016/j.cub.2008.02.033Open DOISearch in Google Scholar

Gleeson S.K., Good R.E. 2010. Root growth response to water and nutrients in the New Jersey Pinelands. Canadian Journal of Forest Research 40(1): 167–172. DOI: 10.1139/x09-180.GleesonS.K.GoodR.E.2010Root growth response to water and nutrients in the New Jersey PinelandsCanadian Journal of Forest Research40116717210.1139/x09-180Open DOISearch in Google Scholar

Henke M., Sarlikioti V., Kurth W., Buck-Sorlin G.H., Pagès L. 2014. Exploring root developmental plasticity to nitrogen with a three-dimensional architectural model. Plant and Soil 385(1–2): 49–62. DOI: 10.1007/s11104-014-2221-7.HenkeM.SarlikiotiV.KurthW.Buck-SorlinG.H.PagèsL.2014Exploring root developmental plasticity to nitrogen with a three-dimensional architectural modelPlant and Soil3851–2496210.1007/s11104-014-2221-7Open DOISearch in Google Scholar

Hodge A. 2004. The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist 162(1): 9–24. DOI: 10.1111/j.1469-8137.2004.01015.x.HodgeA.2004The plastic plant: root responses to heterogeneous supplies of nutrientsNew Phytologist162192410.1111/j.1469-8137.2004.01015.xOpen DOISearch in Google Scholar

Kiba T., Krapp A. 2016. Plant nitrogen acquisition under low availability: Regulation of uptake and root architecture. Plant and Cell Physiology 57(4): 707–714. DOI: 10.1093/pcp/pcw052.KibaT.KrappA.2016Plant nitrogen acquisition under low availability: Regulation of uptake and root architecturePlant and Cell Physiology57470771410.1093/pcp/pcw052Open DOISearch in Google Scholar

Li S., Liu X., Wang M., Yu W. 2016. Exploring root plasticity to resource patches based on swarm behavior. Acta Physiologiae Plantarum 38(8): 192. DOI: 10.1007/s11738-016-2227-2.LiS.LiuX.WangM.YuW.2016Exploring root plasticity to resource patches based on swarm behaviorActa Physiologiae Plantarum38819210.1007/s11738-016-2227-2Open DOISearch in Google Scholar

Lucas M., Guédon Y., Jay-Allemand C., Godin C., Laplaze L. 2008. An auxin transport-based model of root branching in Arabidopsis thaliana. PLoS One 3(11); e3673, 13 p. DOI: 10.1371/journal.pone.0003673.LucasM.GuédonY.Jay-AllemandC.GodinC.LaplazeL.2008An auxin transport-based model of root branching in Arabidopsis thalianaPLoS One311e367313 p.10.1371/journal.pone.0003673Open DOISearch in Google Scholar

Manske G.G.B., Ortiz-Monasterio J.I., Van Ginkel M., González R.M., Rajaram S., Molina E., Vlek P.L.G. 2000. Traits associated with improved P-uptake efficiency in CIMMYT's semidwarf spring bread wheat grown on an acid Andisol in Mexico. Plant and Soil 221(2): 189–204. DOI: 10.1023/a:1004727201568.ManskeG.G.B.Ortiz-MonasterioJ.I.Van GinkelM.GonzálezR.M.RajaramS.MolinaE.VlekP.L.G.2000Traits associated with improved P-uptake efficiency in CIMMYT's semidwarf spring bread wheat grown on an acid Andisol in MexicoPlant and Soil221218920410.1023/a:1004727201568Open DOISearch in Google Scholar

Matos T., Cruz C., Correia L. 2014. Root growth model based on swarm intelligence. In: Morte A., Varma A. (Eds.), Root Engineering. Soil Biology 40: 57–73. DOI: 10.1007/978-3-642-54276-3_4.MatosT.CruzC.CorreiaL.2014Root growth model based on swarm intelligenceIn:MorteA.VarmaA.(Eds.),Root Engineering. Soil Biology40577310.1007/978-3-642-54276-3_4Open DOISearch in Google Scholar

McCleery W.T., Mohd-Radzman N.A., Grieneisen V.A. 2017. Root branching plasticity: collective decision-making results from local and global signalling. Current Opinion in Cell Biology 44: 51–58. DOI: 10.1016/j.ceb.2017.03.001.McCleeryW.T.Mohd-RadzmanN.A.GrieneisenV.A.2017Root branching plasticity: collective decision-making results from local and global signallingCurrent Opinion in Cell Biology44515810.1016/j.ceb.2017.03.001Open DOISearch in Google Scholar

Pagès L. 2011. Links between root developmental traits and foraging performance. Plant, Cell and Environment 34: 1749–1760. DOI: 10.1111/j.1365-3040.2011.02371.x.PagèsL.2011Links between root developmental traits and foraging performancePlant, Cell and Environment341749176010.1111/j.1365-3040.2011.02371.xOpen DOISearch in Google Scholar

Pagès L., Moreau D., Sarlikioti V., Boukcim H., Nguyen C. 2012. ArchiSimple: a parsimonious model of the root system architecture. IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications, pp. 297–303. DOI: 10.1109/pma.2012.6524849.PagèsL.MoreauD.SarlikiotiV.BoukcimH.NguyenC.2012ArchiSimple: a parsimonious model of the root system architectureIEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications29730310.1109/pma.2012.6524849Open DOISearch in Google Scholar

Pagès L., Bécel C., Boukcim H., Moreau D., Nguyen C., Voisin A.-S. 2014. Calibration and evaluation of ArchiSimple, a simple model of root system architecture. Ecological Modelling 290: 76–84. DOI: 10.1016/j.ecolmodel.2013.11.014.PagèsL.BécelC.BoukcimH.MoreauD.NguyenC.VoisinA.-S.2014Calibration and evaluation of ArchiSimple, a simple model of root system architectureEcological Modelling290768410.1016/j.ecolmodel.2013.11.014Open DOISearch in Google Scholar

Postma J.A., Kuppe C., Owen M.R., Mellor N., Griffiths M., Bennett M.J. et al. 2017. OpenSimRoot: widening the scope and application of root architectural models. New Phytologist 215(3): 1274–1286. DOI: 10.1111/nph.14641.PostmaJ.A.KuppeC.OwenM.R.MellorN.GriffithsM.BennettM.J.2017OpenSimRoot: widening the scope and application of root architectural modelsNew Phytologist21531274128610.1111/nph.14641Open DOISearch in Google Scholar

Rellán-Álvarez R., Lobet G., Dinneny J.R. 2016. Environmental control of root system biology. Annual Review of Plant Biology 67(1): 619–642. DOI: 10.1146/annurev-arplant-043015-111848.Rellán-ÁlvarezR.LobetG.DinnenyJ.R.2016Environmental control of root system biologyAnnual Review of Plant Biology67161964210.1146/annurev-arplant-043015-111848Open DOISearch in Google Scholar

Schnepf A., Leitner D., Landl M., Lobet G., Mai T.H., Morandage S. et al. 2018. CRootBox: A Structural-Functional Modelling Framework For Root Systems. Annals of Botany 121(5): 1033–1053. DOI: 10.1093/aob/mcx221.SchnepfA.LeitnerD.LandlM.LobetG.MaiT.H.MorandageS.2018CRootBox: A Structural-Functional Modelling Framework For Root SystemsAnnals of Botany12151033105310.1093/aob/mcx221Open DOISearch in Google Scholar

Tian H., De Smet I., Ding Z. 2014. Shaping a root system: regulating lateral versus primary root growth. Trends in Plant Science 19(7): 426–431. DOI: 10.1016/j.tplants.2014.01.007.TianH.De SmetI.DingZ.2014Shaping a root system: regulating lateral versus primary root growthTrends in Plant Science19742643110.1016/j.tplants.2014.01.007Open DOISearch in Google Scholar

Zhang H., Forde B.G. 1998. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279(5349): 407–409. DOI: 10.1126/science.279.5349.407.ZhangH.FordeB.G.1998An Arabidopsis MADS box gene that controls nutrient-induced changes in root architectureScience279534940740910.1126/science.279.5349.407Open DOISearch in Google Scholar

Zhu J., Kaeppler S.M., Lynch J.P. 2005. Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. Theoretical and Applied Genetics 111(4): 688–695. DOI: 10.1007/s00122-005-2051-3.ZhuJ.KaepplerS.M.LynchJ.P.2005Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supplyTheoretical and Applied Genetics111468869510.1007/s00122-005-2051-3Open DOISearch in Google Scholar

eISSN:
2300-5009
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Biotechnology, Plant Science, Ecology, other