Open Access

Effect of T-shaped spur dike length on mean flow characteristics along a 180-degree sharp bend


Cite

Abhari, M.N., Ghodsian, M., Vaghefi, M., Panahpur, N., 2010. Experimental and numerical simulation of flow in a 90 bend. Flow. Meas. Instrum., 21, 292–298. https://doi.org/10.1016/j.flowmeasinst.2010.03.00210.1016/j.flowmeasinst.2010.03.002Search in Google Scholar

Aksoy, A.O., Bombar, G., Arkis, T., Guney, M.S., 2017. Study of the time-dependent clear water scour around circular bridge piers. J. Hydrol. Hydromech., 65, 26–34. https://doi.org/10.1515/johh-2016-004810.1515/johh-2016-0048Search in Google Scholar

Blanckaert, K., Graf, W.H., 2001. Mean flow and turbulence in open-channel bend. J. Hydraul. Eng., 127, 835–847. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:10(835)10.1061/(ASCE)0733-9429(2001)127:10(835)Search in Google Scholar

Chiew, Y.M., Melville, B.W., 1987. Local Scour around Bridge Piers. J. Hydraul. Res., 25, 15–26. https://doi.org/10.1080/0022168870949928510.1080/00221688709499285Search in Google Scholar

Evangelista, S., Giovinco, G., Kocaman, S., 2017. A multi-parameter calibration method for the numerical simulation of morphodynamic problems. J. Hydrol. Hydromech., 65, 175–182. https://doi.org/10.1515/johh-2017-001410.1515/johh-2017-0014Search in Google Scholar

Fazli, M., Ghodsian, M., Salehi Neyshabouri, S.A.A., 2008. Scour and flow field around a spur dike in a 90o bend. Int. J. Sediment. Res., 23, 56–68. https://doi.org/10.1016/S1001-6279(08)60005-010.1016/S1001-6279(08)60005-0Search in Google Scholar

Ghodsian, M., Vaghefi, M., 2009. Experimental study on scour and flow field in a scour hole around a T-shape spur dikes in a 90˚ bend. Int. J. Sediment. Res., 24, 145–158. https://doi.org/10.1016/S1001-6279(09)60022-610.1016/S1001-6279(09)60022-6Search in Google Scholar

Gill, M.A., 1972. Erosion and sand beds around spur dikes. J. Hydraul. Div., 98, 1587–1602.10.1061/JYCEAJ.0003406Search in Google Scholar

Jahadi, M., Afzalimehr, H., Rowinski, P.M., 2019. Flow structure within a vegetation patch in a gravel-bed river. J. Hydrol. Hydromech., 67, 154–162. https://doi.org/10.2478/johh-2019-000110.2478/johh-2019-0001Search in Google Scholar

Koken, M., Gogus, M., 2015. Effect of spur dike length on the horseshoe vortex system and the bed shear stress distribution. J. Hydraul. Res., 53, 196–206. https://doi.org/10.1080/00221686.2014.96781910.1080/00221686.2014.967819Search in Google Scholar

Lien, H.C., Hsieh, T.Y., Yang, J.C., Yeh, K.C., 1999. Bend-flow simulation using 2D depth-averaged model. J. Hydraul. Eng., 125, 1097–1108. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:10(1097)10.1061/(ASCE)0733-9429(1999)125:10(1097)Search in Google Scholar

Liu, X., Zhou, Q., Huang, S., Guo, Y., Liu, C., 2018. Estimation of flow direction in meandering compound channels. J. Hydrol., 556, 143–153. https://doi.org/10.1016/j.jhydrol.2017.10.07110.1016/j.jhydrol.2017.10.071Search in Google Scholar

Mehraein, M., Ghodsian, M., Najibi, S.A., 2014. Experimental investigation on the flow field around a spur dike in a 90 degree sharp bend. In: Proc. of River flow Conf., Lausanne, pp. 743–749.10.1201/b17133-101Search in Google Scholar

Namaee, M.R., Sui, J., 2019. Impact of armour layer on the depth of scour hole around side-by-side bridge piers under ice-covered flow condition. J. Hydrol. Hydromech., 67, 240–251. https://10.2478/johh-2019-001010.2478/johh-2019-0010Search in Google Scholar

Namaee, M.R., Sui, J., 2020. Velocity profiles and turbulence intensities around side-by-side bridge piers under ice-covered flow condition. J. Hydrol. Hydromech., 68, 70–82. https://10.2478/johh-2019-002910.2478/johh-2019-0029Search in Google Scholar

Neill, C.R., 1968. A re-examination of the beginning of movement for coarse granular bed materials. Hydraulics Research Station, Wallingford.Search in Google Scholar

Nortek, A.S., 2009. Vectrino velocimeter manual. Nortek AS, Bærum.Search in Google Scholar

Novak, P., Nalluri, C., 1984. Incipient motion of sediment particles over fixed beds. J. Hydraul. Res., 22, 181–197. https://doi.org/10.1080/0022168840949940510.1080/00221688409499405Search in Google Scholar

Parker, G., Toro-Escobar, C.M., Ramey, M., Beck, S., 2003. Effect of floodwater extraction on mountain stream morphology. J. Hydral. Eng., 129, 885–895. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:11(885)10.1061/(ASCE)0733-9429(2003)129:11(885)Search in Google Scholar

Perzedwojski, B., Blazejewski, R., Pilarczyk, K.W., 1995. River Training Techniques: Fundamental, Design and Application. A.A. Balkema, Rotterdam.Search in Google Scholar

Rozovskii, I.L., 1957. Flow of water in bends of open channels, Academy of Sciences of the Ukrainian SSR, Kiev.Search in Google Scholar

Safarzadeh, A., Salehi Neyshabouri, S.A.A., Zarrati, A.R., 2016. Experimental investigation on 3D turbulent flow around straight and T-shaped groynes in a flat bed channel. J. Hydraul. Eng., 142, 04016021. https://doi.org/10.1061/(ASCE)HY.1943-7900.000114410.1061/(ASCE)HY.1943-7900.0001144Search in Google Scholar

Schlichting, H., 1968. Boundary Layer Theory. McGraw-Hill, New York.Search in Google Scholar

Sharma, K., Mohapatra, P.K., 2012. Separation zone in flow past a spur dyke on rigid bed meandering channel. J. Hydraul. Eng., 138, 897–901. https://doi.org/10.1061/(ASCE)HY.1943-7900.000058610.1061/(ASCE)HY.1943-7900.0000586Search in Google Scholar

Shukry, A., 1950. Flow around bends in an open flume. T. Am. Soc. Civ. Eng., 115, 751–779.10.1061/TACEAT.0006426Search in Google Scholar

Smart, G.M., 1999. Turbulent velocity profiles and boundary shear in gravel bed rivers. J. Hydral. Eng., 125, 106–116. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:2(106)10.1061/(ASCE)0733-9429(1999)125:2(106)Search in Google Scholar

Vaghefi, M., 2009. Experimental investigation on flow field and scour pattern around T-shape spur dikes in a 90° bend. Ph.D. Thesis, Tarbiat Modares University, Tehran.Search in Google Scholar

Vaghefi, M., Akbari, M., 2019. Procedure for setting up 180 degree sharp bend flume including construction and examinations with hydraulic structures. Sci. Iran., 26, 270–278. https://doi.org/10.24200/sci.2018.5033.105410.24200/sci.2018.5033.1054Search in Google Scholar

Vaghefi, M., Ghodsian, M., Salehi Neyshabouri, S.A.A., 2012. Experimental study on scour around a T-shaped spur dike in a channel bend. J. Hydraul. Eng., 27, 498–509. https://doi.org/10.1061/(ASCE)HY.1943-7900.000053610.1061/(ASCE)HY.1943-7900.0000536Search in Google Scholar

Vaghefi, M., Safarpoor, Y., Hashemi, S.S., 2015. Effects of relative curvature on the scour pattern in a 90° bend with a T-shaped spur dike using a numerical method. Int. J. River. Basin. Manage., 13, 501–514. https://doi.org/10.1080/15715124.2015.104918110.1080/15715124.2015.1049181Search in Google Scholar

Vaghefi, M., Akbari, M., Fiouz, A.R., 2016a. An Experimental study of mean and turbulent flow in a 180 degree sharp open channel bend: secondary flow and bed shear stress. KSCE. J. Civ. Eng., 20, 1582–1593. https://doi.org/10.1007/s12205-015-1560-010.1007/s12205-015-1560-0Search in Google Scholar

Vaghefi, M., Safarpoor, Y., Akbari, M., 2016b. Numerical investigation of flow pattern and components of three-dimensional velocity around a submerged T-shaped spur dike in a 90 degree bend. J. Cent. South. Univ., 23, 2984–2998. https://doi.org/10.1007/s11771-016-3362-z10.1007/s11771-016-3362-zSearch in Google Scholar

Vaghefi, M., Ghodsian, M., Akbari, M., 2017. Experimental investigation on 3D flow around a single T-shaped spur dike in a bend. Period. Polytech-Civ., 61, 462–470. https://doi.org/10.3311/PPci.799910.3311/PPci.7999Search in Google Scholar

Vaghefi, M., Faraji, B., Akbari, M., Eghbalzadeh, A., 2018a. Numerical investigation of flow pattern around a T-shaped spur dike in the vicinity of attractive and repelling protective structures. J. Braz. Soc. Mech. Sci., 40, 93. https://doi.org/10.1007/s40430-017-0954-y10.1007/s40430-017-0954-ySearch in Google Scholar

Vaghefi, M., Mahmoodi, K., Akbari, M., 2018b. A comparison among data mining algorithms for outlier detection using flow pattern experiments. Sci. Iran., 25, 590–605. https://doi.org/10.24200/sci.2017.418210.24200/sci.2017.4182Search in Google Scholar

Vaghefi, M., Mahmoodi, K., Akbari, M., 2019a. Detection of outlier in 3D flow velocity collection in an open-channel bend using various data mining techniques. IJST-T Civ. Eng., 43, 197–214. https://doi.org/10.1007/s40996-018-0131-210.1007/s40996-018-0131-2Search in Google Scholar

Vaghefi, M., Radan, P., Akbari, M., 2019b. Flow pattern around attractive, vertical, and repelling t-shaped spur dikes in a mild bend using CFD modeling. Int. J. Civ. Eng., 17, 607–617. https://doi.org/10.1007/s40999-018-0340-x10.1007/s40999-018-0340-xSearch in Google Scholar

Vaghefi, M., Mahmoodi, K., Setayeshi, S., Akbari, M., 2020. Application of artificial neural networks to predict flow velocity in a 180° sharp bend with and without a spur dike. Soft. Comput., 24, 8805–8821. https://doi.org/10.1007/s00500-019-04413-510.1007/s00500-019-04413-5Search in Google Scholar

Velísková, Y., Chára, Z., Schügerl, R., Dulovičová, R., 2018. CFD simulation of flow behind overflooded obstacle. J. Hydrol. Hydromech., 66, 448–456. https://doi.org/10.2478/johh-2018-002810.2478/johh-2018-0028Search in Google Scholar

Wu, Y.S., Chiew, Y.M., 2012. Three-dimensional scour at submarine pipelines. J. Hydraul. Eng., 138, 788–795. https://doi.org/10.1061/(ASCE)HY.1943-7900.000058310.1061/(ASCE)HY.1943-7900.0000583Search in Google Scholar

Yang, J., Zhang, J., Zhang, Q., Teng, X., Chen, W., Li, X., 2019. Experimental research on the maximum backwater height in front of a permeable spur dike in the bend of a spillway chute. Water. Supp., 19, 1841–1850. https://doi.org/10.2166/ws.2019.06110.2166/ws.2019.061Search in Google Scholar

Zhang, P., Yang, S., Hu, J., Li, W., Fu, X., Li, D., 2020. A new method for extracting spanwise vortex from 2D particle image velocimetry data in open-channel flow. J. Hydrol. Hydro-mech., 68, 242–248. https://doi.org/10.2478/johh-2020-002010.2478/johh-2020-0020Search in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other