Cite

Balashov, E., Mukhina, I., Rizhiya, E., 2019. Differences in water vapor adsorption-desorption of non aged and 3-year aged biochar in sandy Spodosols. Acta Hort. Regiotec., 22, 57–61.10.2478/ahr-2019-0010Search in Google Scholar

Beck-Broichsitter, S., Ruth, S., Schröder, R., Fleige, H., Gerke, H. H., Horn, R., 2020. Simultaneous determination of wettability and shrinkage in an organic residue amended loamy topsoil. J. Hydrol. Hydromech., 68, 111–118.10.2478/johh-2020-0007Search in Google Scholar

Bernardes, M.C., Martinelli, L.A., Krusache, A.V., Gudeman, J., Moreira, M., Victoria, R.L., Ometto, P.H.B., Balleser, M.V.R., Autenkampe, K.A., Richey, J.E., Hedges, J.I., 2004. Riverine organic matter composition as a function of land use changes, southwest Amazon. Ecol. Soc. Am., 14, 263–279.10.1890/01-6028Search in Google Scholar

Bethlenfalvay, G.J., Cantrell, I.C., Mihara, K.L., Schréner, R.P., 1999. Relationships between soil aggregation and mycorhizae as influenced by soil biota and nitrogen nutrition. Biol. Fertil. Soils., 28, 356–363.10.1007/s003740050504Search in Google Scholar

Blanco–Canqui, H., 2017. Biochar and soil physical properties. Soil Sci. Am. J., 81, 687–711.10.2136/sssaj2017.01.0017Search in Google Scholar

Bogunovic, I., Telak, L.J., Pereira, P., Filipovic, V., Filipovic, L., Percin, A., Durdevic, B., Birkás, M., Dekemati, I., Comino, J.R., 2020. Land management impacts on soil properties and initial soil erosion processes in olives and vegetable crops. J. Hydrol. Hydromech., 68, 328–337.10.2478/johh-2020-0033Search in Google Scholar

Bronick, C.J., Lal, R., 2005. The soil structure and land management: a review. Geoderma, 124, 3–22.10.1016/j.geoderma.2004.03.005Search in Google Scholar

Carter, M.R., Stewart, B.A., 1996. Structure and Organic Matter Storage in Agricultural Soils. CRC/Lewis Publisher, Boca Raton, 289 p.Search in Google Scholar

Czachor, H., Lichner, Ľ., 2013. Temperature influences water sorptivity of soil aggregates. J. Hydrol. Hydromech. 61, 84–87.10.2478/johh-2013-0011Search in Google Scholar

Čimo, J., Špánik, F., Šiška, B., Tomlain, J., Horák, J., 2012. Practical Biometeorology. Slovak University of Agriculture, Nitra, Slovakia, 178 p. (In Slovak.)Search in Google Scholar

Demisie, W., Liu, Z., Zhang, H., 2014. Effect of biochar on carbon fractions and enzyme activity of red soil. Catena, 121, 214–221.10.1016/j.catena.2014.05.020Search in Google Scholar

Dong, W.Y., Zhang, X.Y., Dai, X.Q., Fux, L., Yang, F.T., Liu, X.Y., Sun, X.M., Wen, X.F., Schaeffer, S., 2014. Changes in soil microbial community composition in response to fertilization of paddy soils in subtropical China. Appl. Soil Eco., 84, 140–147.10.1016/j.apsoil.2014.06.007Search in Google Scholar

Dong, X., Li, G., Guan, T., Lyn, Q., 2016. Long-term effect of biochar amount on the control and composition of organic matter in soil aggregates under field conditions. J. Soils Sediments, 16, 142–145.10.1007/s11368-015-1338-5Search in Google Scholar

Dziadowiec, H., Gonet, S.S., 1999. Estimation of fractional composition of soil humus by Kononova–Bielcikova‘s method. Methodical guide-book for soil organic matter studies. Prace Komisji Naukowych Polskiego Towarzystwa Naukowego 120, Warszawa, Poland, pp. 31–34.Search in Google Scholar

Elzobair, K., Alkanami, M.T., Alasvud, A., 2017. Effect of manure levels on growth and yield of yellow corn in sandy soil under dry climate. J. Pure Appl. Sci., 16, 147–150.Search in Google Scholar

Enders, A., Manlei, K., Whitman, T., Joseph, S., Lehmann, J., 2012. Characterization of biochars to evaluate recaltritate and agronomic performance. Bioresource Technol., 114, 644–653.10.1016/j.biortech.2012.03.02222483559Search in Google Scholar

Fiedler, H.J., Reissig, H., 1964. Lehrbuch der Bodenkunde (Textbook of Soil Science). VEB Fischer Verlag, Jena, 544 p. (In German.)Search in Google Scholar

Fulajtár, E., 2006. Physical Properties of Soil. VÚPOP, Bratislava, Slovakia, 156 p. (In Slovak.)Search in Google Scholar

Fungo, B., Lehmann, J., Kalbitz, K., Tenywa, M., Thiongo, H., Nevfeld, H., 2017. Emissions intensity and carbon stocks of a tropical Ultisol after amendment with Tithonia green manure, urea and biochar. Field Crops Res., 209, 179–188.10.1016/j.fcr.2017.05.013547315828775654Search in Google Scholar

Gaida, A. M., Przewloka, B., Gawryjolek, K., 2013. Changes in soil quality associated with tillage system applied. Int. Agrophys., 27, 133–141.10.2478/v10247-012-0078-7Search in Google Scholar

Geisseler, D., Scow, K.M., 2014. Does long-term use of mineral fertilisers affect the soil microbial biomass? Better Crops with Plant Food, 98, 4, 13–15.Search in Google Scholar

Grosbellet, G., Vidal-Beaudel, L., Caubel, V., Charpentier, S., 2011. Improvement of soil structure formation by degradation of coarse organic matter. Geoderma, 162, 27–38.10.1016/j.geoderma.2011.01.003Search in Google Scholar

Gul, S., Whalen, J.K., Thomas, B.W., Sanchdeva, V., Deng, H.Y., 2015. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agric. Ecosys. Environ., 206, 46–59.10.1016/j.agee.2015.03.015Search in Google Scholar

Gupta, V.V., Germida, J.J., 2015. Soil aggregation: influence on microbial biomass and implications for biological processes. Soil Biol. Biochem., 80, A3–A9.10.1016/j.soilbio.2014.09.002Search in Google Scholar

Haynes, R.J., Naidu, R., 1998. Influence of lime, fertilizer and manure application on soil organic matter content and soil physical conditions: a review. Nut. Cycl. Agroecosys., 51, 123–137.10.1023/A:1009738307837Search in Google Scholar

Horák, J., 2015. Testing biochar as a possible way to ameliorate slightly acidic soil at the research field located in the Danubian Lowland. Acta Hort. Regiotec., 18, 20–24.10.1515/ahr-2015-0005Search in Google Scholar

Hrivňáková, K., Makovníková, J., Barančíková, G., Bezák, P., Bezáková, Z., Dodok, R., Grečo, V., Chlpík, J., Kobza, J., Lištjak, M., Mališ, J., Píš, V., Schlosserová, J., Slávik, O., Styk, J., Širáň, M., 2011. Uniform Methods of Soil Analyses. VÚPOP, Bratislava, Slovakia, 112 p. (In Slovak.)Search in Google Scholar

Hu, F., Xu, Ch., Li, H., Li, S., Yu, Z., Li, Y., He, X., 2015. Particles interaction forces and their effects on soil aggregates breakdown. Soil Till. Res., 147, 1–9.10.1016/j.still.2014.11.006Search in Google Scholar

Igaz, D., Šimanský, V., Horák, J., Kondrlová, E., Domanová, J., Rodný, M., Buchkina, N.P., 2018. Can a single dose of bio-char affect selected soil physical and chemical characteristics? J. Hydrol. Hydromech., 66, 421–428.10.2478/johh-2018-0034Search in Google Scholar

IUSS Working Group WRB, 2015. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106, FAO, Rome., 112 p.Search in Google Scholar

Jien, S.H., Wang, Ch.Ch., Lee, T.Y., 2015. Stabilization of organic matter by biochar application in compost–amended soils with contrasting pH values and textures. Sustainability, 7, 13317–13333.10.3390/su71013317Search in Google Scholar

Jindo, K., Sonoki, T., Matsumoto, K., Canellas, L., Roig, A., Sanchez–Monedero, M.A., 2016. Influence of biochar addition on the humic substances of composting manures. Waste Management, 49, 545–552.10.1016/j.wasman.2016.01.00726786401Search in Google Scholar

Jozefaciuk, G., Czachor, H., 2014. Impact of organic matter, iron oxides, alumina, silica and drying on mechanical and water stability of artificial soil aggregates. Assessment of new method to study water stability. Geoderma, 221–222, 1–10.10.1016/j.geoderma.2014.01.020Search in Google Scholar

Juriga, M., Šimanský, V., 2019. Effects of biochar and its reap-plication on soil pH and sorption properties of silt loam Haplic Luvisol. Acta Hort. Regiotec., 22, 66–71.10.2478/ahr-2019-0012Search in Google Scholar

Juriga, M., Šimanský, V., Horák, J., Kondrlová, E., Igaz, D., Polláková, N., Buchkina, N., Balashov, E., 2018. The effect of different rates of biochar and biochar in combination with N fertilizer on the parameters of soil organic matter and soil structure. J. Ecol. Engin., 19, 153–161.10.12911/22998993/92894Search in Google Scholar

Kondrlová, E., Horák, J., Igaz, D., Dobiášová, D., 2017. The possibility of using digital images in assessment of plant canopy development and weed spread. Acta Hort. Regiotec., 20, 36–40.10.1515/ahr-2017-0008Search in Google Scholar

Kopittke, P.M., Menzies, N.W., Wang, P., McKenwa, B.A., Lombi, E., 2019. Soil and the intensification of agriculture for global food security. Environ. Internat., 132, 105–109.10.1016/j.envint.2019.10507831400601Search in Google Scholar

Leelamanie, D.A.L., Karube, J., 2014. Water stable aggregates of Japanese Andisol as affected by hydrophobicity and drying temperature. J. Hydrol. Hydromech., 62, 97–100.10.2478/johh-2014-0019Search in Google Scholar

Leelamanie, D.A.L., Manawardana, C.U., 2019. Soil hydro-physical properties as affected by solid waste compost amendments: seasonal and short-term effects in an Ultisol. J. Hydrol. Hydromech., 67, 232–239.10.2478/johh-2019-0007Search in Google Scholar

Lehmann, J., Gaunt, J., Rondon, M., 2006. Bio-char sequestration in terrestrial ecosystems – a review. Mitig. Adapt. Strat. Glob. Change, 11, 395–419.10.1007/s11027-005-9006-5Search in Google Scholar

Lehmann, J., Rillig, M.C., Thies J., Masiell, C.A., Hockaday, W.C., Crowley, D., 2011. Biochar effects on soil biota, A review. Soil Biol. Biochem., 43, 1812–1836.10.1016/j.soilbio.2011.04.022Search in Google Scholar

Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, B., Skjemstad, J.O., Thies, J., Luizão, F.J., Petersen, J., Neves, E.G., 2006. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J., 70, 1719–1730.10.2136/sssaj2005.0383Search in Google Scholar

Liang, G., Wang, X., Zhou, X., Song, D., Zhang, X., 2015. Characteristic of maize biochar with different pyrolysis temperatures and its effect on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil. Sci. Total Environ., 538, 137–144.10.1016/j.scitotenv.2015.08.02626298256Search in Google Scholar

Liu, Z., Chen, X., Jing, Y., Li, Q., Zhang, J., Huang, Q., 2014. Effects of biochar amendment on rapessed red soil. Catena, 123, 45–51.10.1016/j.catena.2014.07.005Search in Google Scholar

Loginow, W., Wisniewski, W., Gonet, S.S., Ciescinska, B., 1987. Fractionation of organic carbon based on susceptibility to oxidation. Pol. J. Soil Sci., 20, 47–52.Search in Google Scholar

Lu, W.W., Ding, W., Zhang, J.H., Li, Y., Luo, J.F., Bolan, N., Xie, Z.B., 2014. Biochar suppressed the decomposition of organic carbon in activated sandy loam soil a negative priming effect. Soil Biol. Biochem., 76, 12–21.10.1016/j.soilbio.2014.04.029Search in Google Scholar

Lugato, E., Simonetti, G., Morari, F., Nardi, S., Berti, A., Giardi, L., 2010. Distribution of organic and humic carbon in wet-sieved aggregates of different soil under long-term fertilization experiment. Geoderma, 157, 80–85.10.1016/j.geoderma.2010.03.017Search in Google Scholar

Mierzwa-Hersztek, M., Gondek, K., Kopeć, M., Ukalska-Jaruga, A., 2018. Biochar changes in soil based on quantitative and qualitative humus compounds parameters. Soil Sci. Ann., 69, 234–242.10.2478/ssa-2018-0024Search in Google Scholar

Moreno–Barriga, F., Díaz, V., Acosta, J.A., Muňoz, M.Á., Faz, Á., Zornoza, R., 2017. Organic matter dynamics soil aggregation and microbial biomass and activity in Technosols created with metalliferous mine residues, biochar and marble waste. Geoderma, 301, 19–29.10.1016/j.geoderma.2017.04.017Search in Google Scholar

Mukherjee, A., Lal, R., 2013. Biochar impact on soil physical properties and greehouse gas emissions. Agronomy, 3, 313–339.10.3390/agronomy3020313Search in Google Scholar

Obia, A., Mulder, J., Martines, V., Conrelissen, G., Borresen, T., 2016. In situ if biochar on aggregation, water retention and porosity in light-textured tropical soil. Soil Till. Res., 155, 35–44.10.1016/j.still.2015.08.002Search in Google Scholar

Onweremadu, E.U., Onyia, V.N., Anikwe, M.A.N., 2007. Carbon and nitrogen distribution in water-stable aggregates under two tillage techniques in Fluvisols of Owerri area, southeastern Nigeria. Soil Till. Res., 97, 195–206.10.1016/j.still.2007.09.011Search in Google Scholar

Paradelo, R. van Oort, F., Chenu, C., 2013. Water-dispersible clay in bare fallow soils after 80 years of continuous fertilizer addition. Geoderma, 200-201, 40–44.10.1016/j.geoderma.2013.01.014Search in Google Scholar

Pires, L.P., Borges, J.A., Cooper, M., Kosa, J.A., Heck, R.J., 2017. Soil structure changes induced by tillage systems. Soil Till. Res., 165, 66–79.10.1016/j.still.2016.07.010Search in Google Scholar

Polláková, N., Šimanský, V., Kravka, M., 2018. The influence of soil organic matter fractions in aggregates stabilization in agricultural and forest soils of selected Slovak and Czech hilly lands. J. Soils Sediments, 18, 2790–2800.10.1007/s11368-017-1842-xSearch in Google Scholar

Ren, X., Yuan, X., Sun, W., 2018. Dynamic changes in atrazine and phenauthrene sorption behaviors during the aging of biochar in soils. Environ. Sci. Poll. Res., 25, 81–90.10.1007/s11356-016-8101-327854057Search in Google Scholar

Rząsa, S., Owczarzak, W., 2004. Structure of mineral soils. Wyd. Akademii Rolniczej im. Augusta Cieszkoweskiego, Poznañ, 393 p. (In Polish.)Search in Google Scholar

Scott, H.D., 2000. Soil Physics: Agriculture and Environmental Application. Wiley–Blackwell, 421 p.Search in Google Scholar

Shackley, S., Ruysschaert, G., Zwart, K., Glaser, B., 2016. Biochar in European Soils and Agriculture, Science and Practice. Routledge, London, New York, 301 p.10.4324/9781315884462Search in Google Scholar

Šimanský, V., 2013. Soil organic matter in water-stable aggregates under different soil management practices in a productive vineyard. Arch. Agron. Soil Sci., 59, 1207–1214.10.1080/03650340.2012.708103Search in Google Scholar

Šimanský, V., Bajčan, D., 2014. Stability of aggregates and their ability of carbon sequestration. Soil Water Res., 9, 111–118.10.17221/106/2013-SWRSearch in Google Scholar

Šimanský, V., Horák, J., Igaz, D., Jonczak, J., Markiewicz, M., Felber, R., Rizhiya, E.Y., Lukac, M., 2016. How dose of biochar and biochar with nitrogen can improve the parameters of soil organic matter and soil structure? Biologia, 71, 989–995.10.1515/biolog-2016-0122Search in Google Scholar

Šimanský, V., Horák, J., Igaz, D., Balashov, E., Jonczak, J., 2018a. Biochar and biochar with N fertilizer as a potential tool for improving soil sorption of nutrients. J. Soils Sediments, 18, 1432–1440.10.1007/s11368-017-1886-ySearch in Google Scholar

Šimanský, V., Igaz, D., Horák, J., Šurda, P., Kolenčík, M., Buchkina, N.P., Uzarowicz, L., Juriga, M., Šrank, D., Pauková, Ž., 2018b. Response of soil organic matter and water-stable aggregates to different biochar treatments including nitrogen fertilization. J. Hydrol. Hydromech., 66, pp. 429–436.10.2478/johh-2018-0033Search in Google Scholar

Sing, B.P., Cowie, A.L., 2014. Long–term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Sci. Reports, 132, 82–84.10.1038/srep03687Search in Google Scholar

Six, J., Bossuyt, H., Degryze, S., Denef, K., 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter Dynamics. Soil Till. Res., 79, 7–31.10.1016/j.still.2004.03.008Search in Google Scholar

Spaccini, R., Piccolo, A., Conte, P., Habermanuer, G., Gerzaber, M.M., 2002. Increased soil organic carbon sequestration through hydrophobic protection by humic substances. Soil Biol. Biochem., 34, 1839–1851.10.1016/S0038-0717(02)00197-9Search in Google Scholar

Shukla, M.K., 2014. Soil Physics: An Introduction. CRC Press, Taylor and Francis Group, Boca Raton, London, New York, 458 p.Search in Google Scholar

Spokas, K., Yargigoglu, E.N., Sadasivam, B.Y., Reddy, K.R., 2015. Physical and chemical characterization of waste wood derived biochars. Waste Management, 36, 256–268.10.1016/j.wasman.2014.10.02925464942Search in Google Scholar

Tisdall, J.M., Oades J.M., 1982. Organic matter and water-stable aggregates in soils. J. Soil Sci., 33, 141–163.10.1111/j.1365-2389.1982.tb01755.xSearch in Google Scholar

Toková, L., Igaz, D., Aydin, E., 2019. Measurement of volu-metric water content by gravimetric and time domain reflectometry methods at field experiment with biochar and N fertilizer. Acta Hort. Regiotec., 22, 62–65.10.2478/ahr-2019-0011Search in Google Scholar

Vitkova, J., Kondrlova, E., Rodny, M., Surda, P., Horak, J., 2017. Analysis of soil water content and crop yield after bio-char application in field conditions. Plant Soil Environ., 63, 569–573.10.17221/564/2017-PSESearch in Google Scholar

Wang, H., Guan, D., Zhang, R., Chen, Y., Hu, Y., Xiao, L., 2014. Soil aggregates and organic carbon affected by the land use change from rice paddy to vegetable field. Ecol. Engin., 70, 206–211.10.1016/j.ecoleng.2014.05.027Search in Google Scholar

Wang, D., Fonte, S.J., Parikh, S.J., Six, J., Scow, K.M., 2017. Biochar additions can enhance soil structure and the physical stabilization of C in aggregates. Geoderma, 303, 110–117.10.1016/j.geoderma.2017.05.027566927329109589Search in Google Scholar

Wang, Y., Wang, Z.L., Zhang, Q., Hu, N., Li, Z., Lou, Y., Li, Y., Xue, D., Chen, Y., Wu, Ch., Zou, Ch.B., Kuzyakov, Y., 2018. Long-term effects of nitrogen fertilization on aggregation and localization of carbon, nitrogen and microbial activities in soil. Sci. Total Environ., 624, 1131–1139.10.1016/j.scitotenv.2017.12.11329929225Search in Google Scholar

Zhao, S., Tan, N., Li, Z., Yang, Y., Zhang, X., Liu, D., Zhang, A., Wang, X., 2017. Varying pyrolysis temperature impacts application effects of biochar on soil labile organic carbon and humic fractions. Appl. Soil Ecol., 116, 399–409.Search in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other