Open Access

Linking soils and streams during events: response of stream water K+ concentration to soil exchangeable K+ concentration in small catchments with fragipan soils (Carpathian Foothills, Poland)


Cite

Alfaro, M.A., Gregory, P.J., Jarvis, S.C., 2004a. Dynamics of potassium leaching on a hillslope grassland soil. J. Environ. Qual., 33, 1, 192–200. https://doi.org/10.2134/jeq2004.192010.2134/jeq2004.1920Search in Google Scholar

Alfaro, M.A., Jarvis, S.C., Gregory, P.J., 2004b. Factors affecting potassium leaching in different soils. Soil Use Manage., 20, 2, 182–189. https://doi.org/10.1111/j.1475-2743.2004.tb00355.x10.1111/j.1475-2743.2004.tb00355.xSearch in Google Scholar

Anderson, S.P., Dietrich, W.E., Torres, R., Montgomery, D.R., Loague, K., 1997. Concentration-discharge relationships in runoff from steep, unchanneled catchment. Water Resour. Res., 33, 1, 211–225. https://doi.org/10.1029/96WR0271510.1029/96WR02715Search in Google Scholar

Barré, P., Velde, B., Abbadie, L., 2007. Dynamic role of ‘‘illite-like’’ clay minerals in temperate soils: facts and hypotheses. Biogeochemistry, 82, 77–88. https://doi.org/10.1007/s10533-006-9054-210.1007/s10533-006-9054-2Search in Google Scholar

Barré, P., Velde, B., Fontaine, C., Catel, N., Abbadie, L., 2008. Which 2:1 clay minerals are involved in the soil potassium reservoir? Insights from potassium addition or removal experiments on three temperate grassland soil clay assemblages. Geoderma, 146, 216–23. https://doi.org/10.1016/j.geoderma.2008.05.02210.1016/j.geoderma.2008.05.022Search in Google Scholar

Bestland, E., Milgate, S., Chittleborough, D., Van Leeuwen, J., Pichler, M., Soloninka, L., 2009. The significance and lag-time of deep through flow: an example from a small, ephemeral catchment with contrasting soil types in the Adelaide Hills, South Australia. Hydrol. Earth Syst. Sci., 13, 1201–1214. https://doi.org/10.5194/hess-13-1201-200910.5194/hess-13-1201-2009Search in Google Scholar

Bryndal, T., 2015. Local flash floods in Central Europe: A case study of Poland, Norsk Geografisk Tidsskrift., 69, 288–298. https://doi.org/10.1080/00291951.2015.107224210.1080/00291951.2015.1072242Search in Google Scholar

Butturini, A, Gallart, F., Latron, J., Vazquez, E., Sabater, F., 2006. Cross-site comparison of variability of DOC and nitrate c–q hysteresis during the autumn–winter period in three Mediterranean headwater streams: a synthetic approach. Biogeochemistry, 77, 327–349. https://doi.org/10.1007/s10533-005-0711-71Search in Google Scholar

Caissie, D., Pollock, T.L., Cunjak, R.A., 1996. Variation in stream water chemistry and hydrograph separation in a small drainage basin. J. Hydrol., 178, 137–157. https://doi.org/10.1016/0022-1694(95)02806-410.1016/0022-1694(95)02806-4Search in Google Scholar

Christophersen, N., Neal, C., Hooper, R.P., Vogt, R.D., Andersen, S., 1990. Modeling streamwater chemistry as a mixture of soil water end-members - a step towards second generation acidification models. J. Hydrol., 116, 1, 307–320. https://doi.org/10.1016/0022-1694(90)90130-P10.1016/0022-1694(90)90130-PSearch in Google Scholar

Coles, A.E., McDonnell, J., 2018. Fill and spill drives runoff connectivity over frozen ground. J. Hydrol., 558, 115–128. https://doi.org/10.1016/j.jhydrol.2018.01.01610.1016/j.jhydrol.2018.01.016Search in Google Scholar

Dingman, S.L., 2002. Physical Hydrology. Prentice Hall, Upper Saddle River, 646 p.Search in Google Scholar

Dobermann, A., Cruz, P.C.S, Cassman, K.G., 1996. Fertilizer inputs, nutrient balance, and soil nutrient-supplying power in intensive, irrigated rice systems. I. Potassium uptake and K balance. Nutr. Cycl. Agroecosys., 46, 1–10. https://doi.org/10.1007/BF0021021910.1007/BF00210219Search in Google Scholar

Edwards, A.M.C., 1973. The variation of dissolved constituents with discharge in some Norfolk Rivers. J. Hydrol., 18, 219–242. https://doi.org/10.1016/0022-1694(73)90049-810.1016/0022-1694(73)90049-8Search in Google Scholar

Elsenbeer, H., Lack, A., Cassel, K., 1995a. Chemical fingerprints of hydrological compartments and flow paths at La Cuenca, western Amazonia. Water Resour. Res., 31, 12, 3051–3058. https://doi.org/10.1029/95WR0253710.1029/95WR02537Search in Google Scholar

Elsenbeer, H., Lorieri, D., Bonell, M., 1995b. Mixing model approaches to estimate storm flow sources in an overland flow-dominated tropical rain forest catchment. Water Resour. Res., 31, 9, 2267–2278. https://doi.org/10.1029/95WR0165110.1029/95WR01651Search in Google Scholar

Evans, C., Davies, T.D., 1998. Causes of concentration/discharge hysteresis and its potential as a tool for the analysis of episode hydrochemistry. Water Resour. Res., 34, 129–137. https://doi.org/10.1029/97WR0188110.1029/97WR01881Search in Google Scholar

Foster, I.D.L., 1978. A multivariate model of storm-period solute behavior. J. Hydrol., 39, 339–353. https://doi.org/10.1016/0022-1694(78)90010-010.1016/0022-1694(78)90010-0Search in Google Scholar

Gburek, W.J., Needelman, B.A., Srinivasan, M.S., 2006. Fragipan controls on runoff generation: Hydropedological implications at landscape and watershed scales. Geoderma, 131, 330–344. https://doi.org/10.1016/j.geoderma.2005.03.02110.1016/j.geoderma.2005.03.021Search in Google Scholar

Gee, G.W., Bauder, J.W., 1986. Particle-size analysis. In: Klute, A. (Ed.): Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. Agronomy Monograph. Soil Science Society of America. Madison, Wisconsin, pp. 427–445.Search in Google Scholar

Griffioen, J., 2001. Potassium adsorption ratios as an indicator for the fate of agricultural potassium in groundwater. J. Hydrol., 254, 244–254. https://doi.org/10.1016/S0022-1694(01)00503-010.1016/S0022-1694(01)00503-0Search in Google Scholar

GUS, 2012. Means of production in agriculture in the 2010/2011 farming year. Statistical information and elaborations (2011). Central Statistical Office in Poland, Warszawa.Search in Google Scholar

Hem, J.D., 1985. Study and interpretation of the chemical characteristics of natural water, U.S. Geological Survey, Alexandria, 264 p.Search in Google Scholar

Hill, A.R., 1993. Base cation chemistry of storm runoff in a forested headwater wetland. Water Resour. Res., 29, 8, 2663–2673. https://doi.org/10.1029/93WR0075810.1029/93WR00758Search in Google Scholar

Holz, G.K., 2010. Sources and processes of contaminant loss from an intensively grazed catchment inferred from patterns in discharge and concentration of thirteen analytes using high intensity sampling. J. Hydrol., 383, 194–208. https://doi.org/10.1016/j.jhydrol.2009.12.03610.1016/j.jhydrol.2009.12.036Search in Google Scholar

IUSS Working Group WRB, 2015. World reference base for soil resources 2014. International soil classification system for naming soil and creating legends for soil maps. World Soil Resources Reports, 106. Food and Agriculture Organization of the United Nations, Rome.Search in Google Scholar

Irmak, S., Sürücü, A.K., 1999. Effects of different parent materials on some plant nutrients and heavy metals in the arid regions of Turkey. In: Anac, D., Martin-PrÉvel, P. (Eds.): Improved crop quality by nutrient management. Developments in Plant and Soil Sciences, vol. 86. Springer, Netherlands, pp. 289–291. https://doi.org/10.1007/978-0-585-37449-910.1007/978-0-585-37449-9Search in Google Scholar

Jayalakshmi, T., Santhakumaran, A., 2011. Statistical Normalization and Back Propagation for Classification, International Journal of Computer Theory and Engineering, 3, 1, 89–93.10.7763/IJCTE.2011.V3.288Search in Google Scholar

Jobbagy, E.G., Jackson, R.B., 2004. The uplift of soil nutrients by plants: biogeochemical consequences across scales. Ecology, 85, 9, 2380–2389. https://doi.org/10.1890/03-024510.1890/03-0245Search in Google Scholar

Kayser, M., Isselstein, J., 2005. Potassium cycling and losses in grassland systems: a review. Grass Forage Sci., 60, 213–224. https://doi.org/10.1111/j.1365-2494.2005.00478.x10.1111/j.1365-2494.2005.00478.xSearch in Google Scholar

Klimek, M., 2005. Pedogenetical controls on retention properties of silty covers in the Carpathian Foothills marginal zone. Soil Science Annual, 56, 1/2, 85–96. (In Polish.)Search in Google Scholar

Ladouche, B., Probst, A., Viville, D., Idir, S., Baque, D., Loubet, M., Probst, J-L., Bariac, T., 2001. Hydrograph separation using isotopic, chemical and hydrological approaches (Strengbach catchment, France). J. Hydrol., 242, 255–274. https://doi.org/10.1016/S0022-1694(00)00391-710.1016/S0022-1694(00)00391-7Search in Google Scholar

Likens, G.E., 2013. Biogeochemistry of a Forested Ecosystem. Springer, New York – Heidelberg – Dordrecht – London. https://doi.org/10.1007/978-1-4614-7810-210.1007/978-1-4614-7810-2Search in Google Scholar

Likens, G.E., Driscoll, C.T., Buso, D.C., Siccama, D.F., Johnson, C.E., Lovett, G.M., Ryan, D.F., Fahey, T., Reiners, W.A., 1994. The biogeochemistry of potassium at Hubbard Brook. Biogeochemistry, 25, 61–12. https://doi.org/10.1007/BF0000088110.1007/BF00000881Search in Google Scholar

Lindbo, D.L., Rhoton, F.E., Bigham, J.M., Hudnall, W.H., Jones, F.S, Smeck, N.E., Tyler, D.D., 1994. Bulk density and fragipan identification in loess soils of the Lower Mississippi River Valley. Soil Sci. Soc. Am. J., 58, 884–891. https://doi.org/10.2136/sssaj1994.03615995005800030036x10.2136/sssaj1994.03615995005800030036xSearch in Google Scholar

Lloyd, C.E.M., Freer, J.E., Johnes, P.J., Collins, A.L., 2016. Technical Note: Testing an improved index for analysing storm discharge–concentration hysteresis. Hydrol. Earth Syst. Sci., 20, 2, 625–632. https://doi.org/10.5194/hess-20-625-201610.5194/hess-20-625-2016Search in Google Scholar

Małek, S., Astel, A., 2008. Throughfall chemistry in spruce chronosequence in southern Poland. Environ. Pollut., 155, 517–527. https://doi.org/10.1016/j.envpol.2008.01.03110.1016/j.envpol.2008.01.03118358577Search in Google Scholar

McDaniel, P.A., Regan, M.P., Brooks, E., Boll, J., Barndt, S., Falen, A., Young S.K., Hammel, J.E., 2008. Linking fragipans, perched water tables, and catchment-scale hydro-logical processes. Catena, 73, 166–173. https://doi.org/10.1016/j.catena.2007.05.01110.1016/j.catena.2007.05.011Search in Google Scholar

McDowell, W.H., Liptzin, D., 2014. Linking soils and streams: Response of soil solution chemistry to simulated hurricane disturbance mirrors stream chemistry following a severe hurricane. Forest Ecol. Manag., 332, 56–63. https://doi.org/10.1016/j.foreco.2014.06.00110.1016/j.foreco.2014.06.001Search in Google Scholar

McGlynn, B.L., McDonnell, J.J., 2003. Quantyfying the relative contributions of riparian and hillslope zones to catchment runoff. Water Resour. Res., 39, 11. https://doi.org/10.1029/2003WR00209110.1029/2003WR002091Search in Google Scholar

Miller, F.P., Holowaychuk, N., Wilding, L.P., 1971. Canfield silt loam, a Fragiudalf: I. Macromorphological, physical, and chemical properties. Soil Sci. Soc. Am. J., 35, 319–324. https://doi.org/10.2136/sssaj1971.03615995003500020040x10.2136/sssaj1971.03615995003500020040xSearch in Google Scholar

Mulder, J., Christophersen, N., Kopperud, K., Fjeldal, P.H., 1995. Water flow paths and the spatial distribution of soils as a key to understanding differences in streamwater chemistry between three catchments (Norway). Water Air Soil Poll., 81, 67–91. https://doi.org/10.1007/BF0047725710.1007/BF00477257Search in Google Scholar

Mulder, J., Pijpers, M., Christophersen, N., 1991. Water flow paths and the spatial distribution of soils and exchangeable cations in an acid rain-impacted and a pristine catchment in Norway. Water Resour. Res., 27, 11, 2919–2928. https://doi.org/10.1029/91WR0191110.1029/91WR01911Search in Google Scholar

Needelman, B.A, Gburek, W.J., Petersen, G.W., Sharpley, A.N., Kleinman, P.J.A., 2004. Surface runoff along two agricultural hillslopes with contrasting soils. Soil Sci. Soc. Am. J., 68, 914–923. https://doi.org/10.2136/sssaj2004.914010.2136/sssaj2004.9140Search in Google Scholar

Olewicz, Z.R., 1973. Tektonika jednostki bocheńskiej i brzegu jednostki śląskiej między Rabą a Uszwicą. Acta Geologica Polonica, 23, 4, 701–761.Search in Google Scholar

Outram, F.N., Lloyd, C.E.M., Jonczyk, J., Benskin, C.McW.H., Grant, F., Perks, M.T., Deasy C., Burke S.P., Collins A. L., Freer J., Haygarth P.M., Hiscock K.M., Johnes P.J., Lovett A.L., 2014. High-frequency monitoring of nitrogen and phosphorus response in three rural catchments to the end of the 2011–2012 drought in England. Hydrol. Earth Syst. Sci., 18, 3429–3448. https://doi.org/10.5194/hess-18-3429-201410.5194/hess-18-3429-2014Search in Google Scholar

Rockefeller, S.L., McDaniel, P.A., Falen, A.L., 2004. Perched water table responses to forest clearing in northern Idaho. Soil Sci. Soc. Am. J., 68, 168–174. https://doi.org/10.2136/sssaj2004.168010.2136/sssaj2004.1680Search in Google Scholar

Rothe, A., Huber, C., Kreutzer, K., Weis, W., 2002. Deposition and soil leaching in stands of Norway spruce and European Beech: Results from the Höglwald research in comparison with other European case studies. Plant Soil, 240, 33–45, https://doi.org/10.1023/A:101584690695610.1023/A:1015846906956Search in Google Scholar

Sandén, P., Karlsson, S., Düker, A., Ledin, A., Lundman, L., 1997. Variations in hydrochemistry, trace metal concentration and transport during a rain storm event in a small catchment. J. Geochem. Explor., 58, 2–3, 145–155. https://doi.org/10.1016/S0375-6742(96)00078-710.1016/S0375-6742(96)00078-7Search in Google Scholar

Saxton, K.E., Rawls, W.J., Romberger, J.S., Papendick, R.I., 1986. Estimating generalized soil water characteristics from texture. Transactions of the ASAE, 50, 1031–1035.10.2136/sssaj1986.03615995005000040039xSearch in Google Scholar

Saxton, K.E., Rawls, W.J., 2006. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J., 70, 1569–1578. https://doi.org/10.2136/sssaj2005.011710.2136/sssaj2005.0117Search in Google Scholar

Sidle, R.C., Tsuboyama, Y., Noguchi, S., Hosoda, I., Fujieda, M., Shimizu, T., 2000. Stormfow generation in steep forested headwaters: a linked hydrogeomorphic paradigm. Hydrol. Process., 14, 369–385. https://doi.org/10.1002/(SICI)1099-1085(20000228)14:3<369::AID-HYP943>3.0.CO;2-P10.1002/(SICI)1099-1085(20000228)14:3<369::AID-HYP943>3.0.CO;2-PSearch in Google Scholar

Simonsson, M., Andersson, S., Andrist-Rangel, Y., Hillier, S., Mattson, L., Öborn, I., 2007. Potassium release and fixation as a function of fertilizer application rate and soil parent material. Geoderma, 140, 188–198. https://doi.org/10.1016/j.geoderma.2007.04.00210.1016/j.geoderma.2007.04.002Search in Google Scholar

Siwek, J., Siwek, J.P., Żelazny, M., 2013. Environmental and land use factors affecting phosphate hysteresis patterns of stream water during flood events (Carpathian Foothills, Poland). Hydrol. Process., 27, 25, 3674–3684. https://doi.org/10.1002/hyp.948410.1002/hyp.9484Search in Google Scholar

Siwek, J.P., Żelazny, M., Chełmicki, W., 2011. Influence of catchment characteristics and flood type on relationship between streamwater chemistry and streamflow: case study from Carpathian Foothills in Poland. Water Air Soil Poll., 214, 547–563. https://doi.org/10.1007/s11270-010-0445-610.1007/s11270-010-0445-6Search in Google Scholar

Siwek, J.P., Żelazny, M., Siwek, J., Szymański, W., 2017. Effect of land use, seasonality, and hydrometeorological conditions on the K+ concentration–discharge relationship during different types of floods in Carpathian Foothills Catchments (Poland). Water Air Soil Poll., 228, 445. https://doi.org/10.1007/s11270-017-3585-010.1007/s11270-017-3585-0Search in Google Scholar

Skiba, S., Drewnik, M., Klimek, M., Szmuc, R., 1998. Soil cover in the marginal zone of the Carpathian Foothills between the Raba and Uszwica rivers. Prace Geograficzne Instytutu Geografii UJ., 103, 125–135.Search in Google Scholar

Stachurski, A., Zimka, J.R., 2002. Atmospheric deposition and ionic interactions within a beech canopy in the Karkonosze Mountains. Environ. Pollut., 118, 75–87. https://doi.org/10.1016/S0269-7491(01)00238-X10.1016/S0269-7491(01)00238-XSearch in Google Scholar

Stottlemyer, R., 2001. Processes regulating watershed chemical export during snowmelt, Fraser Experimental Forest, Colorado. J. Hydrol., 245, 1–4, 177–195. https://doi.org/10.1016/S0022-1694(01)00352-310.1016/S0022-1694(01)00352-3Search in Google Scholar

Sumner, M.E., Miller, W.P., 1996. Cation exchange capacity and exchange coefficients. In: Sparks D.L. (Ed.): Methods of Soil Analysis. Part 3. Chemical Methods. SSSA Book Series vol. 5. Soil Science Society of America, Madison, Wisconsin, pp. 1201–1229.10.2136/sssabookser5.3.c40Search in Google Scholar

Szymański, W., Skiba, M. Skiba, S., 2011. Fragipan horizon degradation and bleached tongues formation in Albeluvisols of the Carpathian Foothills, Poland. Geoderma, 167–168, 340–350. https://doi.org/10.1016/j.geoderma.2011.07.00710.1016/j.geoderma.2011.07.007Search in Google Scholar

Szymański, W., Skiba, M., Skiba, S., 2012. Origin of reversible cementation and brittleness of the fragipan horizon in Albeluvisols of the Carpathian Foothills, Poland. Catena, 99, 66–74. https://doi.org/10.1016/j.catena.2012.07.01210.1016/j.catena.2012.07.012Search in Google Scholar

Święchowicz, J., Michno, A., 2005. Obszar badań. In: Żelazny, M. (Ed.): Dynamika obiegu związków biogennych w wodach opadowych, powierzchniowych i podziemnych w zlewniach o różnym użytkowaniu na Pogórzu Wiśnickim. Instytut Geografii i Gospodarki Przestrzennej UJ, Kraków, pp. 63–100.Search in Google Scholar

Thomas, G.W., 1996. Soil pH and soil acidity. In: Sparks, D.L. (Ed.): Methods of Soil Analysis. Part 3. Chemical Methods. SSSA Book Series, vol. 5. Soil Science Society of America, Madison, Wisconsin, pp. 475–490.10.2136/sssabookser5.3.c16Search in Google Scholar

Tripler, C.E., Kaushal, S.S., Likens, G.E., Walter, M.T., 2006. Patterns in potassium dynamics in forest ecosystems. Ecol. Lett., 9, 451–466. https://doi.org/10.1111/j.1461-0248.2006.00891.x10.1111/j.1461-0248.2006.00891.xSearch in Google Scholar

Ulery, A.L., Graham, R.C., Chadwick, O.A., Wood, H.B., 1995. Decade-scale changes of soil carbon, nitrogen and exchangeable cations under chaparral and pine. Geoderma, 65, 121–134. https://doi.org/10.1016/0016-7061(94)00034-810.1016/0016-7061(94)00034-8Search in Google Scholar

Walling, D.E., Foster, I.D.L., 1975. Variations in the natural chemical concentration of river water during flood flows, and the lag effect: some further comments. J. Hydrol., 26, 237–244. https://doi.org/10.1016/0022-1694(75)90005-010.1016/0022-1694(75)90005-0Search in Google Scholar

Wanielista, M., Kersten, R., Eaglin, R., 1997. Hydrology: Water Quantity and Quality Control. Wiley, New York, 592 p.Search in Google Scholar

Williams, M.R., Leydecker, A., Brown, A.D., Melack, J.M., 2001. Processes regulating the solute concentrations of snowmelt runoff in two subalpine catchments of the Sierra Nevada, California. Water Resour. Res., 37, 1993–2008. https://doi.org/10.1029/2000WR90036110.1029/2000WR900361Search in Google Scholar

Witty, J.E., Knox, E.G., 1989. Identification, role in soil taxonomy andworldwide distribution of fragipans. In: Smeck, N.E., Ciolkosz, E.J. (Eds.): Fragipans: their occurrence, classification and genesis, vol. 24. Soil Science Society of America. Madison, Wisconsin, pp. 1–9.10.2136/sssaspecpub24.c1Search in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other