Open Access

Development of a universal microinfiltrometer to estimate extent and persistence of soil water repellency as a function of capillary pressure and interface chemical composition


Cite

Alagna, V., Iovino, M., Bagarello, V., Mataix-Solera, J., Lichner, L., 2019. Alternative analysis of transient infiltration experiment to estimate soil water repellency. Hydrol. Process., 33, 661–674.10.1002/hyp.13352Search in Google Scholar

Bachmann, J., Woche, S.K., Goebel, M-O., Kirkham, M.B., Horton, R., 2003. Extended methodology for determining wetting properties of porous media. Water Resour. Res., 39, 1353.10.1029/2003WR002143Search in Google Scholar

Bachmann, J., Deurer, M., Arye, G., 2007. Water-repellent soil: Development of a contact angle–dependent water-retention model. Vadose Zone J., 6, 436–445.10.2136/vzj2006.0060Search in Google Scholar

Bachmann, J., Söffker. S., Sepehrnia, N, Goebel, M.-O., Woche, S.K., 2020. The effect of temperature and wetting–drying cycles on soil wettability: Dynamic molecular restructuring processes at the solid–water–air interface. (In preparation).10.1111/ejss.13102Search in Google Scholar

Bauters, T.W.J., Steenhuis, T.S., DiCarlo, D.A., Nieber, J.L., Dekker, L.W. Ritsema, C.J., Parlange, J.-Y., Haverkamp, R., 2000. Physics of water repellent soils. J. Hydrol., 231–232, 233–243.10.1016/S0022-1694(00)00197-9Search in Google Scholar

Beatty, S.M., Smith, J.E., 2014. Infiltration of water and ethanol solutions in water repellent post wildfire soils. J. Hydrol., 514, 233–248.10.1016/j.jhydrol.2014.04.024Search in Google Scholar

Benito, E., Varela, E., Rodríguez-Alleres, M., 2019. Persistence of water repellency in coarse-textured soils under various types of forests in NW Spain. J. Hydrol. Hydromech., 67, 129–134.10.2478/johh-2018-0038Search in Google Scholar

Clothier, B.E., Vogeler, I., Magesan, G.N., 2000. The breakdown of water repellency and solute transport through a hydrophobic soil. J. Hydrol., 231–232, 255–264.10.1016/S0022-1694(00)00199-2Search in Google Scholar

Cosentino, D., Hallett, P.D., Michel, J.C., Chenu, C., 2010. Do different methods for measuring the hydrophobicity of soil aggregates give the same trends in soil amended with residue? Geoderma, 159, 221–227.10.1016/j.geoderma.2010.07.015Search in Google Scholar

De Rooij, GH., 2000. Modeling fingered flow of water in soils owing to wetting front instability: a review. J. Hydrol., 231–232, 277–294.10.1016/S0022-1694(00)00201-8Search in Google Scholar

Decagon, 2007. Minidisk Infiltrometer User's Manual. Version 6. Decagon Devices, Inc., Pullman.Search in Google Scholar

Dekker, L.W., Ritsema, C.J., 1994. How water moves in a water repellent sandy soil. I. Potential and actual water repellency. Water Resour. Res., 30, 2507–2517.10.1029/94WR00749Search in Google Scholar

Dekker, L.W., Ritsema, C.J., 2000. Wetting patterns and moisture variability in water repellent Dutch soils. J. Hydrol., 231–232, 148–164.10.1016/S0022-1694(00)00191-8Search in Google Scholar

Dekker, L.W, Doerr, S.H, Oostindie, K., Ziogas, A.K., Ritsema, C.J., 2001. Water repellency and critical soil water content in a dune sand. Soil Sci. Soc. Am. J., 65, 1667–1674.10.2136/sssaj2001.1667Search in Google Scholar

Dekker, L.W., Oostindie, K., Ritsema, C.J., 2005. Exponential increase of publications related to soil water repellency. Aust. J. Soil Res., 43, 403–441.10.1071/SR05007Search in Google Scholar

Deurer, M., Bachmann, J., 2007. Modeling water movement in heterogeneous water-repellent soil: 2. A conceptual numerical simulation. Vadose Zone J., 6, 446–457.10.2136/vzj2006.0061Search in Google Scholar

Diehl, D., Schneckenburger, T., Krüger, J., Goebel, M.-O., Woche, S.K., Schwarz, J., Shchegolikhina, A., Lang, F., Marschner, B., Thiele-Bruhn, S., Bachmann, J., Schaumann, G.E., 2014. Effect of multivalent cations, temperature and aging on soil organic matter interfacial properties. Environ. Chem., 11, 709–718.10.1071/EN14008Search in Google Scholar

Doerr, S.H., Shakesby, R.A., Walsh, R.P.D., 2000. Soil water repellency: its causes characteristics and hydrogeomorphological significance. Earth-Sci. Rev., 51, 33–65.10.1016/S0012-8252(00)00011-8Search in Google Scholar

Evonik, 2000. Stress Crack and Chemical Resistance. Darmstadt, Germany.Search in Google Scholar

Gaj, M., Lamparter, A., Woche, S.K., Bachmann, J., McDonnell, J.J., Stange, C.F., 2019. The role of matric potential, solid interfacial chemistry, and wettability on isotopic equilibrium fractionation. Vadose Zone J., 18. DOI: 10.2136/vzj2018.04.008310.2136/vzj2018.04.0083Search in Google Scholar

Goebel, M-O, Bachmann, J, Woche, S.K, Fischer, W.R, Horton, R., 2004: Water potential and aggregate size effects on contact angle and surface energy. Soil Sci. Soc. Am. J., 68, 383–393.10.2136/sssaj2004.3830Search in Google Scholar

Goebel, M.-O., Bachmann, J., Reichstein, M., Janssens I.A., Guggenberger, G., 2011. Soil water repellency and its implications for organic matter decomposition – is there a link to extreme climatic events? Glob. Change Biol., 17, 2640–2656.10.1111/j.1365-2486.2011.02414.xSearch in Google Scholar

Goebel, M.O., Woche, S.K., Abraham, P.M., Schaumann, G.E., Bachmann, J., 2013. Water repellency enhances the deposition of negatively charged hydrophilic colloids in a water-saturated sand matrix. Colloids Surf. A, 431, 150–160.10.1016/j.colsurfa.2013.04.038Search in Google Scholar

Gordon, D.C., Hallett, P.D., 2014. An automated microinfiltrometer to measure small-scale soil water infiltration properties. J. Hydrol. Hydromech., 62, 248–252.10.2478/johh-2014-0023Search in Google Scholar

Hallett, P.D., 2007. An introduction to soil water repellency. In: Gaskin, R.E. (Ed.): Adjuvants for Agrochemicals. Hand Multimedia, Christchurch, New Zealand, 9 p.Search in Google Scholar

Hallett, P.D., Young, I.M., 1999. Changes to water repellence of soil aggregates caused by substrate-induced microbial activity. Eur. J. Soil Sci., 50, 35–40.10.1046/j.1365-2389.1999.00214.xSearch in Google Scholar

Hallett, P.D., Baumgartl, T., Young, I.M., 2001. Subcritical water repellency of aggregates from a range of soil management practices. Soil Sci. Soc. Am. J., 65, 184–190.10.2136/sssaj2001.651184xSearch in Google Scholar

Hallett, P.D., Gordon, D.C., Bengough, A.G., 2003. Plant influence on rhizosphere hydraulic properties: direct measurements using a miniaturized infiltrometer. New Phytol., 157, 597–603.10.1046/j.1469-8137.2003.00690.xSearch in Google Scholar

Iovino, M., Pekárová, P., Hallett, P.D., Pekár, J., Lichner, Ľ., Mataix-Solera, J., Alagna, V., Walsh, R., Raffan, A., Schacht, K., Rodný, M., 2018. Extent and persistence of soil water repellency induced by pines in different geographic regions. J. Hydrol. Hydromech., 66, 360–368.10.2478/johh-2018-0024Search in Google Scholar

Johnson, M.S., Lehmann, J., Steenhuis, T.S., Oliveira, L.V., Fernandes, E.C.M., 2005. Spatial and temporal variability of soil water repellency of Amazonian pastures. Aust. J. Soil Res., 43, 319–326.10.1071/SR04097Search in Google Scholar

Jonas, A.M., Cai. R., Vermeyen, R., Nysten, B., Vanneste, M., Smet, D.D., Glinel, K., 2020. How roughness controls the water repellency of woven fabrics. Mater. Des., 187, 108389.10.1016/j.matdes.2019.108389Search in Google Scholar

Leeds-Harrison, P.B., Youngs, E.G., 1997. Estimating the hydraulic conductivity of aggregates conditioned by different tillage treatments from sorption measurements. Soil Till. Res., 41, 141–147.10.1016/S0167-1987(96)01079-3Search in Google Scholar

Leeds-Harrison, P.B., Youngs, E.G., Uddin, B., 1994. A device for determining the sorptivity of soil aggregates. Eur. J. Soil Sci., 45, 269–272.10.1111/j.1365-2389.1994.tb00509.xSearch in Google Scholar

Leelamanie, D.A.L., Karube, J., Yoshida, A., 2008. Characterizing water repellency indices: Contact angle and water drop penetration time of hydrophobized sand. J. Soil Sci. Plant Nutr., 54, 179–187.10.1111/j.1747-0765.2007.00232.xSearch in Google Scholar

Letey, J., Carrillo, M.L.K., Pang, X.P., 2000. Approaches to characterize the degree of water repellency. J. Hydrol., 231–232, 61–65.10.1016/S0022-1694(00)00183-9Search in Google Scholar

Li, X., Chang, S.S.X., Salifu, K.F., 2014. Soil texture and layering effects on water and salt dynamics in the presence of a water table: a review. Environ. Rev., 22, 41–50.10.1139/er-2013-0035Search in Google Scholar

Lichner, L., Hallett, P.D., Drongova, Z., Czachor, H., Kovacik, L., Mataix-Solera, J., Homolak, M., 2013. Algae influence the hydrophysical parameters of a sandy soil. Catena, 108, 58–68.10.1016/j.catena.2012.02.016Search in Google Scholar

Lichner, L., Felde, V.J.M.N.L., Büdel, B., Leue, M., Gerke, H.H., Ehlerbrock, R.H., Kollár, J., Rodný, M., Šurda, P., Fodor, N., Sándor, R., 2018. Effect of vegetation and its succession on water repellency in sandy soils. Ecohydrology, 11, e1991.10.1002/eco.1991Search in Google Scholar

Mao, J., Nierop, K.G.J., Dekker, S.C., Dekker, L.W., Chen, B., 2019. Understanding the mechanisms of soil water repellency from nanoscale to ecosystem scale: a review. J. Soils Sediments, 19, 171–185.10.1007/s11368-018-2195-9Search in Google Scholar

Muehl, G.J.H., Ruehlmann, J., Goebel, M.-O., Bachmann, J., 2012. Application of confocal laser scanning microscopy (CLSM) to visualize the effect of porous media wettability on unsaturated pore water configuration. J. Soils Sediments, 2, 75–85.10.1007/s11368-011-0395-7Search in Google Scholar

Orfánus, T., Dlapa, P., Fodor, N., Rajkai, K., Sándor, R., Nováková, K., 2014. How severe and subcritical water repellency determines the seasonal infiltration in natural and cultivated sandy soils. Soil Till. Res., 135, 49–59.10.1016/j.still.2013.09.005Search in Google Scholar

Philip, J.R., 1957. The theory of infiltration: 1. The infiltration equation and its solution. Soil Sci., 83, 345–357.10.1097/00010694-195705000-00002Search in Google Scholar

R Core Team, 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.Search in Google Scholar

Rodríguez-Alleres, M., Benito, E., 2011. Spatial and temporal variability of surface water repellency in sandy loam soils of NW Spain under Pinus pinaster and Eucalyptus globulus plantations. Hydrol Process., 25, 3649–3658.10.1002/hyp.8091Search in Google Scholar

Ruspini, L.C., Farokhpoor, R., Øren, P.E., 2017. Pore-scale modeling of capillary trapping in water-wet porous media: A new cooperative pore-body filling model. Adv. Water Resour., 108, 1–14.10.1016/j.advwatres.2017.07.008Search in Google Scholar

Sepehrnia, N., Hajabbasi, M.A., Afyuni, M., Lichner, L., 2016. Extent and persistence of water repellency in two Iranian soils. Biologia, 71, 1137–1143.10.1515/biolog-2016-0135Search in Google Scholar

Sepehrnia, N., Hajabbasi, M.A., Afyuni, M., Lichner, L., 2017. Soil water repellency changes with depth and relationship to physical properties within wettable and repellent soil profiles. J. Hydrol. Hydromech., 65, 99–104.10.1515/johh-2016-0055Search in Google Scholar

Thieme, L., Graeber, D., Kaupenjohann, M., Siemens, J., 2016. Fast-freezing with liquid nitrogen preserves bulk dissolved organic matter concentrations, but not its composition. Biogeosciences, 13, 4697–4705.10.5194/bg-13-4697-2016Search in Google Scholar

Tillman, R.W., Scotter, D.R., Wallis, M.G., Clothier, B.E., 1989. Water-repellency and its measurement by using intrinsic sorptivity. Aust. J. Soil Res., 27, 637–644.10.1071/SR9890637Search in Google Scholar

Tschapek, M., 1984. Criteria for determining the hydrophilicity hydrophobicity of Soils. J. Plant Nutr. Soil Sci., 137–149.10.1002/jpln.19841470202Search in Google Scholar

Wang, Z., Wu, Q.J., Wu, L., Ritsema, C.J., Dekker, L.W., Feyen, J., 2000. Effects of soil water repellency on infiltration rate and flow instability. J. Hydrol., 231–232, 265–276.10.1016/S0022-1694(00)00200-6Search in Google Scholar

Wenzel, R.N., 1936. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem., 28, 988–994.10.1021/ie50320a024Search in Google Scholar

Woche, S.K., Goebel, M.-O., Mikutta, R., Schurig, C., Kaestner, M., Guggenberger, G., Bachmann, J., 2017. Soil wettability can be explained by the chemical composition of particle interfaces - An XPS study. Sci. Rep., 7, 42877.10.1038/srep42877531440628211469Search in Google Scholar

Zhang, R., 1997. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Sci. Soc. Am. J., 61, 1024–1030.10.2136/sssaj1997.03615995006100040005xSearch in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other