Cite

Addisie, M.B., Ayele, G.K., Gessess, A.A., Tilahun, S.A., Zegeye, A.D., Moges, M.M., Schmitter, P., Langendoen, E.J., Steenhuis, T.S., 2017. Gully head retreat in the sub-humid Ethiopian Highlands: The Ene-Chilala catchment. Land Degradation & Development, 28, 1579–1588. DOI: 10.1002/ldr.268810.1002/ldr.2688Search in Google Scholar

Addisie, M.B., Langendoen, E.J., Aynalem, D.W., Ayele, G.K., Tilahun, S.A., Schmitter, P., Mekuria, W., Moges, M.M., Steenhuis, T.S., 2018. Assessment of practices for controlling shallow valley-bottom gullies in the sub-humid Ethiopian highlands. Water, 10, 389. DOI: 10.3390/w1004038910.3390/w10040389Search in Google Scholar

Agnew, L.J., Lyon, S.W., Gérard-Marchant, P., Collins, V.B., Lembo, A.J., Steenhuis, T.S., Walter, M.T., 2006. Identifying hydrologically sensitive areas: bridging the gap between science and application. Journal of Environmental Management, 78, 63–76.10.1016/j.jenvman.2005.04.02116169658Search in Google Scholar

Alemie, T.C., Tilahun, S.A., Ochoa-Tocachi, B.F., Schmitter, P., Buytaert, W., Parlange, J.Y, Steenhuis, T.S., 2019. Predicting (observed) shallow groundwater tables for sloping highland aquifers. Water Resources Research, 55, 11088–11100. DOI:10.1029/2019WR02505010.1029/2019WR025050Search in Google Scholar

Ayele, G.K., Gessess, A.A., Addisie, M.B., Tilahun, S.A., Tebebu, T.Y., Tenessa, D.B., Langendoen, E.J., Nicholson, C.F., Steenhuis, T.S., 2016. A biophysical and economic assessment of a community-based rehabilitated gully in the Ethiopian highlands. Land Degradation & Development, 27, 270–280.10.1002/ldr.2425Search in Google Scholar

Ayenew, T., 2001. Numerical groundwater flow modeling of the Central Main Ethiopian rift lakes basin. SINET: Ethiopian Journal of Science, 24, 167–184. https://doi.org/10.4314/sinet.v24i2.1818410.4314/sinet.v24i2.18184Search in Google Scholar

Ayenew, T., Tilahun, N., 2008. Assessment of lake-groundwater interactions and anthropogenic stresses, using numerical groundwater flow model, for a rift lake catchment in Central Ethiopia. Lakes & Reservoirs: Research & Management, 13, 325–343. https://doi.org/10.1111/j.1440-1770.2008.00383.x10.1111/j.1440-1770.2008.00383.xSearch in Google Scholar

Ayenew, T., Demille, M., Wohnillich, S., 2008a. Hydrogeological framework and occurrence of groundwater in the Ethiopian aquifers. Journal of African Earth Sciences, 52, 97–113. https://doi.org/10.1016/j.jafrearsci.2008.06.00610.1016/j.jafrearsci.2008.06.006Search in Google Scholar

Ayenew, T., Demlie, M., Stefan, W.S., 2008b. Application of numerical modeling for groundwater flow system analysis in the Akaki Catchment, Central Ethiopia. Mathematical Geosciences, 40, 887–906.10.1007/s11004-008-9144-xSearch in Google Scholar

Bayabil, H.K., Tilahun, S.A., Collick, A.S., Yitaferu, B., Steenhuis, T.S., 2010. Are runoff processes ecologically or topographically driven in the (sub) humid Ethiopian highlands? The case of the Maybar watershed. Ecohydrology, 3, 457–466.10.1002/eco.170Search in Google Scholar

Bayabil, H.K., Tebebu, T.Y., Stoof, C.R., Steenhuis, T.S., 2016. Effects of a deep-rooted crop and soil amended with charcoal on spatial and temporal runoff patterns in a degrading tropical highland watershed. Hydrology and Earth System Sciences, 20, 875–885.10.5194/hess-20-875-2016Search in Google Scholar

Bayabil, H.K., Yiftaru, B., Steenhuis, T.S., 2017. Shift from transport limited to supply limited sediment concentrations with the progression of monsoon rains in the Upper Blue Nile Basin. Earth Surface Processes and Landforms, 42, 1317–1328.10.1002/esp.4103Search in Google Scholar

Berehanu, B., Ayenew, T., Azagegn, T., 2017. Challenges of groundwater flow model calibration using MODFLOW in Ethiopia: With particular emphasis to the Upper Awash River Basin. Journal of Geoscience and Environment Protection, 5, 50–66. DOI: 10.4236/gep.2017.5300510.4236/gep.2017.53005Search in Google Scholar

Betrie, G.D., Mohamed, Y.A., Griensven, A.V., Srinivasan, R., 2011. Sediment management modelling in the Blue Nile Basin using SWAT model. Hydrology and Earth System Sciences, 15, 807–818.10.5194/hess-15-807-2011Search in Google Scholar

Betson, R.P., 1964. What is watershed runoff? Journal of Geophysical Research, 69, 1541–1552.10.1029/JZ069i008p01541Search in Google Scholar

Beven, K., 2018. A century of denial: Preferential and nonequilibrium water flow in soils, 1864–1984. Vadose Zone Journal, 17, 180153. DOI: 10.2136/vzj2018.08.015310.2136/vzj2018.08.0153Search in Google Scholar

Chebud, Y.A., Melesse, A.M., 2009. Numerical modeling of the groundwater flow system of the Gumera sub-basin in Lake Tana basin, Ethiopia. Hydrological Processes, 23, 3694–3704.10.1002/hyp.7516Search in Google Scholar

Descheemaeker, K., Raes, D., Nyssen, J., Poesen, J., Haile, M., Deckers, J., 2009. Changes in water flows and water productivity upon vegetation regeneration on degraded hillslopes in northern Ethiopia: a water balance modelling exercise. The Rangeland Journal, 31, 237–249.10.1071/RJ09010Search in Google Scholar

Dunne, T., Black, R.D., 1970. Partial area contributions to storm runoff in a small New England watershed. Water Resources Research, 6, 1296–1311.10.1029/WR006i005p01296Search in Google Scholar

Enku, T., Melesse, A.M., 2014. A simple temperature method for the estimation of evapotranspiration. Hydrological Processes, 28, 2945–2960.10.1002/hyp.9844Search in Google Scholar

Fox, G.A., Sheshukov, A., Cruse, R., Kolar, R.L., Guertault, L., Gesch, K.R., Dutnell, R.C., 2016. Reservoir sedimentation and upstream sediment sources: perspectives and future research needs on streambank and gully erosion. Environmental Management, 57, 945–955.10.1007/s00267-016-0671-9Search in Google Scholar

García-Orenes, F., Roldán, A., Mataix-Solera, J., Cerdà, A., Campoy, M., Arcenegui, V., Caravaca, F., 2012. Soil structural stability and erosion rates influenced by agricultural management practices in a semi-arid Mediterranean agro-ecosystem. Soil Use and Management, 28, 571–579.10.1111/j.1475-2743.2012.00451.xSearch in Google Scholar

Golmohammadi, G., Prasher, S., Madani, A., Rudra, R., 2014. Evaluating three hydrological distributed watershed models: MIKE-SHE, APEX, SWAT. Hydrology, 1, 20–39.10.3390/hydrology1010020Search in Google Scholar

Güntner, A., Seibert, J., Uhlenbrook, S., 2004. Modeling spatial patterns of saturated areas: An evaluation of different terrain indices. Water Resources Research, 40, W05114.10.1029/2003WR002864Search in Google Scholar

Gurtz, J., Zappa, M., Jasper, K., Lang, H., Verbunt, M., Badoux, A., Vitvar, T., 2003. A comparative study in modelling runoff and its components in two mountainous catchments. Hydrological Processes, 17, 297–311.10.1002/hyp.1125Search in Google Scholar

Guzman, C.D., Zimale, F.A., Tebebu, T.Y., Bayabil, H.K., Tilahun, S.A., Yitaferu, B., Rientjes, T.H., Steenhuis, T.S., 2017a. Modeling discharge and sediment concentrations after landscape interventions in a humid monsoon climate: The Anjeni watershed in the highlands of Ethiopia. Hydrological Processes, 31, 1239–1257.10.1002/hyp.11092Search in Google Scholar

Guzman, C.D., Tilahun, S.A., Dagnew, D.C., Zegeye, A.D., Tebebu, T.Y., Yitaferu, B., Steenhuis, T.S., 2017b. Modeling sediment concentration and discharge variations in a small Ethiopian watershed with contributions from an unpaved road. Journal of Hydrology and Hydromechanics, 65, 1–17.10.1515/johh-2016-0051Search in Google Scholar

Haregeweyn, N., Yohannes, F., 2003. Testing and evaluation of the agricultural non-point source pollution model (AGNPS) on Augucho catchment, western Hararghe, Ethiopia. Agriculture, Ecosystems & Environment, 99, 201–212.10.1016/S0167-8809(02)00120-2Search in Google Scholar

Herceg, A., Kalicz, P., Kisfaludi, B., Gribovszki, Z., 2016. A monthly-step water balance model to evaluate the hydrological effects of climate change on a regional scale for irrigation design. Slovak Journal of Civil Engineering, 24, 27–35.10.1515/sjce-2016-0019Search in Google Scholar

Hoang, L., Schneiderman, E.M., Moore, K.E., Mukundan, R., Owens, E.M., Steenhuis, T.S., 2017. Predicting saturation-excess runoff distribution with a lumped hillslope model: SWAT-HS. Hydrological Processes, 31, 2226–2243.10.1002/hyp.11179Search in Google Scholar

Hoang, L., Mukundan, R., Moore, KEB., Owens, E.M., Steenhuis, T.S., 2018. The effect of input data resolution and complexity on the uncertainty of hydrological predictions in a humid, vegetated watershed. Hydrology and Earth System Sciences, 22, 5947–5965. https://doi.org/10.5194/hess-22-5947-201810.5194/hess-22-5947-2018Search in Google Scholar

Jackson, C.R., Bitew, M., Du, E., 2014. When interflow also percolates: downslope travel distances and hillslope process zones. Hydrological Processes, 28, 3195–3200. https://doi.org/10.1002/hyp.1015810.1002/hyp.10158Search in Google Scholar

Janeau, J.L., Bricquet, J.P., Planchon, O., Valentin, C., 2003. Soil crusting and infiltration on steep slopes in northern Thailand. European Journal of Soil Science, 54, 543–554.10.1046/j.1365-2389.2003.00494.xSearch in Google Scholar

Kaleab, M.M., Manoj, K.J., 2013. Runoff and sediment modeling using SWAT in Gumera Catchment, Ethiopia. Open Journal of Modern Hydrology, 3, 196–206. DOI: 10.4236/ojmh.2013.3402410.4236/ojmh.2013.34024Search in Google Scholar

Liu, B.M., Collick, A.S., Zeleke, G., Adgo, E., Easton, Z.M., Steenhuis, T.S., 2008. Rainfall-discharge relationships for a monsoonal climate in the Ethiopian highlands. Hydrological Processes, 22, 1059–1067.10.1002/hyp.7022Search in Google Scholar

Lyon, S.W., Lembo Jr, A.J., Walter, M.T., Steenhuis, T.S., 2006. Defining probability of saturation with indicator kriging on hard and soft data. Advances in Water Resources, 29, 181–193.10.1016/j.advwatres.2005.02.012Search in Google Scholar

Moges, M.A., Schmitter, P., Tilahun, S.A., Langan, S., Dagnew, D.C., Akale, A.T., Steenhuis, T.S., 2016. Suitability of watershed models to predict distributed hydrologic response in the Awramba watershed in Lake Tana basin. Land Degradation & Development, 28, 1386–1397.10.1002/ldr.2608Search in Google Scholar

Nash, J., Sutcliffe, J., 1970. River flow forecasting through conceptual models part IA discussion of principles. Journal of Hydrology, 10, 282–290. DOI: 10.1016/00221694(70)90255-6Search in Google Scholar

Nikroo, L., Kompani-Zare, M., Sepaskhah, A.R., Shamsi, S.R., 2010. Groundwater depth and elevation interpolation by kriging methods in Mohr Basin of Fars province in Iran. Environmental Monitoring and Assessment, 166, 387–407.10.1007/s10661-009-1010-xSearch in Google Scholar

Nyssen, J., Vandenreyken, H., Poesen, J., Moeyersons, J., Deckers, J., Haile, M., Salles, C., Govers, G., 2005. Rainfall erosivity and variability in the Northern Ethiopian Highlands. Journal of Hydrology, 311, 172–187.10.1016/j.jhydrol.2004.12.016Search in Google Scholar

Poesen, J., Nachtergaele, J., Verstraeten, G., Valentin, C., 2003. Gully erosion and environmental change: importance and research needs. Catena, 50, 91–133.10.1016/S0341-8162(02)00143-1Search in Google Scholar

Rosenzweig, C., Liverman, D., 1992. Predicted effects of climate change on agriculture: A comparison of temperate and tropical regions. In: Majumdar, S.K., Kalkstein, L.S., Yarnal, B., Miller, E.W., Rosenfeld, L.M. (Eds.): Global Climate Change: Implications, Challenges and Mitigation Measures. The Pennsylvania Academy of Sciences, Easton, Pennsylvania, pp. 342–361.Search in Google Scholar

Schweitzer, F., 1997. Self-organization of complex structures: from individual to collective dynamics. Some introductory remarks. In: Schweitzer, F. (Eds.): Self-organization of Complex Structures: from Individual to Collective Dynamics. CRC Press, Baton Rouge.Search in Google Scholar

Setegn, S.G., Srinivasan, R., Melesse, A.M., Dargahi, B., 2010. SWAT model application and prediction uncertainty analysis in the Lake Tana Basin, Ethiopia. Hydrological Processes, 24, 357–367.10.1002/hyp.7457Search in Google Scholar

Sidle, R.C., Noguchi, S., Tsuboyama, Y., Laursen, K., 2001. A conceptual model of preferential flow systems in forested hillslopes: evidence of self-organization. Hydrological Processes, 15, 1675–1692.10.1002/hyp.233Search in Google Scholar

Sop, T.K., Oldeland, J., 2013. Local perceptions of woody vegetation dynamics in the context of a ‘greening Sahel’: a case study from Burkina Faso. Land Degradation & Development, 24, 511–527.10.1002/ldr.1144Search in Google Scholar

Steenhuis, T.S., van der Molen, W.H., 1986. The Thornthwaite-Mather procedure as a simple engineering method to predict recharge. J. Hydrol., 84, 221–229.10.1016/0022-1694(86)90124-1Search in Google Scholar

Steenhuis, T.S., Collick, A.S., Easton, Z.M., Leggesse, E.S., Bayabil, H.K., White, E.D., Awulachew, S.B., Adgo, E., Ahmed, A.A., 2009. Predicting discharge and sediment for the Abay (Blue Nile) with a simple model. Hydrological Processes, 23, 3728–3737. https://doi.org/10.1002/hyp.751310.1002/hyp.7513Search in Google Scholar

Stomph, T.J., De Ridder, N., Steenhuis, T.S., Van de Giesen, N.C., 2002. Scale effects of Hortonian overland flow and rainfall-runoff dynamics: Laboratory validation of a process-based model. Earth Surface Processes and Landforms, 27, 847–855.10.1002/esp.356Search in Google Scholar

Tebebu, T.Y., Abi, A.Z., Zegeye, A.D., Dahlke, H.E., Easton, Z.M., Tilahun, S.A., Collick, A.S., Kidnau, S., Moges, S., Dadgari, F., 2010. Surface and subsurface flow effect on permanent gully formation and upland erosion near Lake Tana in the northern highlands of Ethiopia. Hydrology and Earth System Sciences, 14, 2207–2217.10.5194/hess-14-2207-2010Search in Google Scholar

Tebebu, T.Y., Steenhuis, T.S., Dagnew, D.C., Guzman, C.D., Bayabil, H.K., Zegeye, A.D., Collick, A.S., Langan, S., Macalister, C., Langendoen, E.J., 2015. Improving efficacy of landscape interventions in the (sub) humid Ethiopian highlands by improved understanding of runoff processes. Frontiers in Earth Science, 3, 49. DOI: 10.3389/feart.2015.0004910.3389/feart.2015.00049Search in Google Scholar

Tebebu, T.Y., Bayabil, H.K., Stoof, C.R., Giri, S.K., Gessess, A.A., Tilahun, S.A., Steenhuis, T.S., 2017. Characterization of degraded soils in the humid Ethiopian highlands. Land Degradation & Development, 28, 1891–1901.10.1002/ldr.2687Search in Google Scholar

Tesemma, Z.K., Mohamed, Y.A., Steenhuis, T.S., 2010. Trends in rainfall and runoff in the Blue Nile basin: 1964-2003. Hydrological Processes, 24, 3747–3758.10.1002/hyp.7893Search in Google Scholar

Thornthwaite, C.W., Mather, J.R., 1955. The water balance. Publ. Climatol., 8, 1.Search in Google Scholar

Tilahun, S., Guzman, C., Zegeye, A., Engda, T., Collick, A., Rimmer, A., Steenhuis, T., 2013. An efficient semi-distributed hillslope erosion model for the subhumid Ethiopian Highlands. Hydrology and Earth System Sciences, 17, 1051–1063.10.5194/hess-17-1051-2013Search in Google Scholar

Tilahun, S.A., Guzman, C.D., Zegeye, A.D., Ayana, E.K., Collick, A.S., Yitaferu, B., Steenhuis, T.S., 2014. Spatial and temporal patterns of soil erosion in the semi-humid Ethiopian highlands: a case study of Debre Mawi watershed. In: Melesse, A.M., Abtew, W., Setegn, S.M. (Eds.): Nile River Basin. Springer.10.1007/978-3-319-02720-3_9Search in Google Scholar

Tilahun, S.A., Guzman, C.D., Zegeye, A.D., Dagnew, D.C., Collick, A.S., Yitaferu, B., Steenhuis, T.S., 2015. Distributed discharge and sediment concentration predictions in the sub-humid Ethiopian highlands: the Debre Mawi watershed. Hydrological Processes, 29, 1817–1828.10.1002/hyp.10298Search in Google Scholar

Tilahun, S.A., Yilak, D.L., Schmitter P., Zimale, F.A., Langan S., Barron, J, Parlange, J-Y., Steenhuis, T.S., 2019. Establishing irrigation potential of a hillside aquifer in the African highlands. Hydrological Processes, 34, 8, 1741–1753. https://doi.org/10.1002/hyp.1365910.1002/hyp.13659Search in Google Scholar

Wale, A.T., Rientjes, H.M., Gieske, A.S., Getachew, H.A., 2009. Ungauged catchment contributions to Lake Tana's water balance. Hydrological Processes, 23, 3682–3693.10.1002/hyp.7284Search in Google Scholar

Walraevens, K., Vandecasteele, I., Martens, K., Nyssen, J., Moeyersons, J., Gebreyohannes, T., De Smedt, F., Poesen, J., Deckers, J., Van Camp, M., 2009. Groundwater recharge and flow in a small mountain catchment in northern Ethiopia. Hydrological Sciences Journal, 54, 739–753.10.1623/hysj.54.4.739Search in Google Scholar

Whipkey, R.Z., 1965. Subsurface storm flow from forested slopes. Hydrological Sciences Journal, 10, 74–85.10.1080/02626666509493392Search in Google Scholar

Yenehun, A., Kristine, W.O., Batelaan., 2017. Spatial and temporal variability of groundwater recharge in Geba basin, Northern Ethiopia. Journal of African Earth Sciences, 134, 198–212. https://doi.org/10.1016/j.jafrearsci.2017.06.00610.1016/j.jafrearsci.2017.06.006Search in Google Scholar

Zeleke, G., 2000. Landscape dynamics and soil erosion process modelling in the north-western Ethiopian highlands. University of Berne, Institute of Geography. https://www.cabdirect.org/cabdirect/abstract/20016786872Search in Google Scholar

Zenebe, A., Vanmaercke, M., Poesen, J., Verstraeten, G., Haregeweyn, N., Haile, M., Amare, K., Deckers, J., Nyssen, J., 2013. Spatial and temporal variability of river flows in the degraded semi-arid tropical mountains of northern Ethiopia. Zeitschrift für Geomorphologie, 57, 143–169.10.1127/0372-8854/2012/0080Search in Google Scholar

Zimale, F.A., Tilahun, S.A., Tebebu, T.Y., Guzman, C.D., Hoang, L., Schneiderman, E.M., Langendoen, E.J., Steenhuis, T.S., 2017. Improving watershed management practices in humid regions. Hydrological Processes, 31, 3294–301.10.1002/hyp.11241Search in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other