Open Access

Response of the parameters of excess infiltration and excess storage model to land use cover change


Cite

Andreássian, V., Parent, E., Michel, C., 2003. A distributionfree test to detect gradual changes in watershed behavior. Water Resour. Res., 39, 9, 1252.Search in Google Scholar

Apostolopoulos, T.K., Georgakakos, K.P., 1997. Parallel computation for streamflow prediction with distributed hydrologic models. Journal of Hydrology, 197, 1–24.10.1016/S0022-1694(96)03281-7Search in Google Scholar

Blyth, K., 1993. The use of microwave remote sensing to improve spatial parameterization of hydrological models. Journal of Hydrology, 152, 103–129.10.1016/0022-1694(93)90142-VSearch in Google Scholar

Beven, K., 1989. Changing ideas in hydrology – The case of physically-based models. Journal of Hydrology, 105, 157–172.10.1016/0022-1694(89)90101-7Search in Google Scholar

Beven, K., 2000a. Rainfall-Runoff Modelling: The Primer. John Wiley and Sons Ltd. Chichester, UK, 360 p.Search in Google Scholar

Beven, K.J., 2000b. Uniqueness of place and process representations in hydrological modelling. Hydrol. Earth Syst. Sci., 4, 203–213.10.5194/hess-4-203-2000Search in Google Scholar

Brown, A.E., Zhang, L., McMahon, T.A., Western, A.W., Vertessy, R.A., 2005. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol., 310, 28–61.10.1016/j.jhydrol.2004.12.010Search in Google Scholar

Calver, A., 1988. Calibration, sensitivity and validation of a physicality based rainfall-runoff model. Journal of Hydrology, 103, 103–115.10.1016/0022-1694(88)90008-XSearch in Google Scholar

Du, J.K., Zheng, D.P., Xu, Y.P., Hu, S.F., Xu, C.Y., 2016. Evaluating functions of reservoirs storage capacities and locations on daily peak attenuation for Ganjiang River Basin using Xinanjiang model. Chinese Geographical Science, 26, 789–802. (In Chinese with English abstract.)10.1007/s11769-016-0838-6Search in Google Scholar

Desilets, S.L.E., Nijssen, B., Ekwurzel, B., Ferré, T.P.A., 2007. Post-wildfire changes in suspended sediment rating curves: Sabino Canyon, Arizona. Hydrological Processes, 14, 1413–1423.10.1002/hyp.6352Search in Google Scholar

Duan, Q.Y., Sorooshian, S., Gupta, V.K., 1992. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research, 28, 1015–1031.10.1029/91WR02985Search in Google Scholar

Finch, J.W., Bradford, R.B., Hudson, J.A., 2004. The spatial distribution of groundwater flooding in a chalk catchment in southern England. Hydrological Processes, 18, 959–971.10.1002/hyp.1340Search in Google Scholar

Gao, G., Fu, B., Zhang, J., 2018. Multiscale temporal variability of flow-sediment relationships during the 1950s–2014 in the Loess Plateau, China. Journal of Hydrology, 563, 609–619.10.1016/j.jhydrol.2018.06.044Search in Google Scholar

Georgescu, M., 2013. Impact of anthropogenic land-use/landcover change on climate and hydrologic cycle over the Greater Phoenix Area. Journal of Urology, 189, e872-e873.Search in Google Scholar

Grayson, R.B., Moore, I.D., Mcmahon, T.A., 1992. Physically based hydrologic modeling: 2. Is the concept realistic? Water Resources Research, 28, 2659–2666.10.1029/92WR01259Search in Google Scholar

Gonzalez-Sosa, E., Braud, I., Dehotin, J., 2010. Impact of land use on the hydraulic properties of the topsoil in a small french catchment. Hydrological Processes, 24, 2382–2399.10.1002/hyp.7640Search in Google Scholar

Jian, S., Zhao, C., Fang, S., Yu, K., 2014. Soil water content and water balance simulation of Caragana korshinskii Kom. in the semiarid Chinese Loess Plateau. Journal of Hydrology and Hydromechanics, 62, 89–96.10.2478/johh-2014-0020Search in Google Scholar

Jian, S., Wu, Z., Hu, C., Zhang, X., 2016. Sap flow in response to rainfall pulses for two shrub species in the semiarid Chinese Loess Plateau. Journal of Hydrology and Hydromechanics, 64, 121–132.10.1515/johh-2016-0023Search in Google Scholar

Kan, G., Li, J., Zhang, X., Ding, L., He, X., Liang, K., Jiang, X., Ren, M., Li, H., Wang, F., Zhang, Z., Hu, Y., 2017. A new hybrid data-driven model for event-based rainfallrunoff simulation. Neural Computing and Applications, 28, 2519–2534.10.1007/s00521-016-2200-4Search in Google Scholar

Karahan, H., Gurarslan, G., Zong, W.G., 2013. Parameter estimation of the nonlinear muskingum flood routing model using a hybrid harmony search algorithm. Journal of Hydraulic Engineering - ASCE, 18, 352–360.10.1061/(ASCE)HE.1943-5584.0000608Search in Google Scholar

Lee, H., Mclntyre, N., Wheater, H., 2005. Selection of conceptual models for regionalization of the rainfall-runoff relationship. Journal of Hydrology, 312, 140–147.10.1016/j.jhydrol.2005.02.016Search in Google Scholar

Liu, X., Gao, Y., Ma, S., Dong, G., 2018. Sediment reduction of warping dams and its timeliness in the Loess Plateau. Journal of Hydraulic Engineering, 49, 145–155.Search in Google Scholar

Li, N., 2018. Study on the mechanism of runoff production and confluence in the Loess Plateau under the change of underlying surface. Master’s Thesis. Zhengzhou University, Zhengzhou.Search in Google Scholar

Luo, W.S., Hu, C.Q., Han, J.T., 1992. Research on a model of runoff yield reflecting excess infiltration and excess storage simultaneously. Chinese Journal of Water and Soil Conservation, 4, 6–13. (In Chinese with English abstract.)Search in Google Scholar

Meng, C., Zhou, J., Dai, M., 2017. Variable infiltration capacity model with bgsa-based wavelet neural network. Stochastic Environmental Research and Risk Assessment, 31, 1871–1885.10.1007/s00477-017-1413-0Search in Google Scholar

Merz, B., Aerts, J., Arnbjerg-Nielsen, K., Baldi, M., Becker, A., Bichet, A., Blöschl, G., Bouwer, L.M., Brauer, A., Cioffi, F., Delgado, J.M., Gocht, M., Guzzetti, F., Harrigan, S., Hirschboeck, K., Kilsby, C., Kron, W., Kwon, H.-H., Lall, U., Merz, R., Nissen, K., Salvatti, P., Swierczynski, T., Ulbrich, U., Viglione, A., Ward, P.J., Weiler, M., Wilhelm, B., Nied, M., 2014. Floods and climate: Emerging perspectives for flood risk assessment and management. Nat. Hazards Earth Syst. Sci., 14, 1921–1942.10.5194/nhess-14-1921-2014Search in Google Scholar

Molina, A., Vanacker, V., Balthazar, V., 2012. Complex land cover change, water and sediment yield in a degraded and environment. Journal of Hydrology, 472, 25–35.10.1016/j.jhydrol.2012.09.012Search in Google Scholar

Moussa, R., Voltz, M., Andrieux, P., 2002. Effects of the spatial organization of agricultural management on the hydrological behaviour of a farmed catchment during flood events. Hydrological Processes, 16, 393–412.10.1002/hyp.333Search in Google Scholar

Mu, S., Zhou, S., Chen, Y., 2013. Assessing the impact of restoration-induced land conversion and management alternatives on net primary productivity in inner Mongolian grassland, China. Global & Planetary Change, 108, 29–41.10.1016/j.gloplacha.2013.06.007Search in Google Scholar

Mwangi, H.M., Julich, S., Patil, S.D., 2016. Relative contribution of land use change and climate variability on discharge of upper Mara River, Kenya. Journal of Hydrology Regional Studies, 5, 244–260.10.1016/j.ejrh.2015.12.059Search in Google Scholar

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through the conceptual models. 1: A discussion of principles. Journal of Hydrology, 10, 282–290.10.1016/0022-1694(70)90255-6Search in Google Scholar

Ogden, F.L., Pradhan, N.R., Charles, W.D., 2011. Relative importance of impervious area, drainage density, width function, and subsurface storm drainage on flood runoff from an urbanized catchment. Water Resources Research, 47, 1–12.10.1029/2011WR010550Search in Google Scholar

Olang, L.O., Fürst, J., 2011. Effects of land cover change on flood peak discharges and runoff volumes: model estimates for the Nyando River basin, Kenya. Hydrological Processes, 25, 80–89.10.1002/hyp.7821Search in Google Scholar

Olchev, A., Ibrom, A., Ross, T., Falk, U., Rakkibu, G., Radler, K., Grote, S., Kreilein, H., Gravenhorst, G., 2008. A modelling approach for simulation of water and carbon dioxide exchange between multi-species tropical rain forest and the atmosphere. Ecological Modelling, 212, 122–130.10.1016/j.ecolmodel.2007.10.021Search in Google Scholar

Oliveira, P.T.S, Nearing, M.A., Moran, M.S., 2014. Trends in water balance components across the Brazilian Cerrado. Water Resources Research, 50, 7100–7114.10.1002/2013WR015202Search in Google Scholar

Park, D., Markus, M., 2014. Analysis of a changing hydrologic flood regime using the variable infiltration capacity model. Journal of Hydrology, 515, 267–280.10.1016/j.jhydrol.2014.05.004Search in Google Scholar

Pathiraja, S., Marshall, L., Sharma, A., 2016. Hydrologic modeling in dynamic catchments: A data assimilation approach. Water Resources Research, 52, 3350–3372.10.1002/2015WR017192Search in Google Scholar

Pirastru, M., Castellini, M., Giadrossich, F., Niedda, M., 2013. Comparing the hydraulic properties of forested and grassed soils on an experimental hillslope in a Mediterranean environment. Procedia Environmental Sciences, 19, 341–350.10.1016/j.proenv.2013.06.039Search in Google Scholar

Ren, L, Shen, H., Yuan, F., Zhao, C., Yang, X., Zheng, P., 2016. Hydrological drought characteristics in the Weihe catchment in a changing environment. Advances in Water Science, 27, 492–500. (In Chinese with English abstract.)Search in Google Scholar

Rogger, M., Agnoletti, M., Alaoui, A., Bathurst, J.C., Bodner, G., Borga, M., Chaplot, V., Gallart, F., Glatzel, G., Holko, L., Horn, R., Kiss, A., Kohnová, S., Leitinger, G., Lennartz, B., Parajka, J., Perdigão, R., Peth, S., Plavcová, L., Quinton, J.N., Salinas, J.L., Santoro, A., Szolgay, J., Tron, S., van den Akker, J.J.H., Viglione, A., Blöschl, G., 2017. Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research. Water Resour. Res., 53, 7, 5209–5219. DOI: 10.1002/2017WR020723.10.1002/2017WR020723557548528919651Search in Google Scholar

Rozalis, S., Morin, E., Yair, Y., Price, C., 2010. Flash flood prediction using an uncelebrated hydrological model and radar rainfall data in a Mediterranean watershed under changing hydrological conditions. Journal of Hydrology, 394, 245–255.10.1016/j.jhydrol.2010.03.021Search in Google Scholar

Sorooshian, S., Duan, Q., Gupta, V.K., 1993. Sthocastic parameter estimation procedures for hydrologic rainfall-runoff models: Correlated and heteroscedastic error cases. Water Resource, 29, 1185–1194.Search in Google Scholar

Uchida, E., Xu, J.T., Rozelle, S., 2005. Grain for green: Costeffectiveness and sustainability of China’s Conservation Set-Aside Program. Land Economics, 81, 247–264.10.3368/le.81.2.247Search in Google Scholar

Viglione, A., Merz, B., Dung, N.V., Parajka, J., Nester, T., Blöschl, G., 2016. Attribution of regional flood changes based on scaling fingerprints. Water Resour. Res., 52, 5322–5340.10.1002/2016WR019036499634227609996Search in Google Scholar

Voss, R., May, W., Roeckner, E., 2002. Enhanced resolution modelling study on anthropogenic climate change: changes in extremes of the hydrological cycle. International Journal of Climatology, 22, 755–777.10.1002/joc.757Search in Google Scholar

Wagener, T., McIntyre, N., Lees, M.J., Wheater, H.S., Gupta, H.V., 2003. Towards reduced uncertainty in conceptual rainfall-runoff modeling: Dynamic identifiability analysis. Hydrol. Processes, 17, 455–476.10.1002/hyp.1135Search in Google Scholar

Wagener, T., 2007. Can we model the hydrological impacts of environmental change? Hydrol. Processes, 21, 3233–3236.10.1002/hyp.6873Search in Google Scholar

Wagener, T., Sivapalan, M., Troch, P.A., McGlynn, B.L., Harman, C.J., Gupta, H.V., Kumar, P., Rao, P.S.C., Basu, N.B., Wilson, J.S., 2010. The future of hydrology: An evolving science for a changing world. Water Resour. Res., 46, W05301.10.1029/2009WR008906Search in Google Scholar

Wallner, M., Haberlandt, U., 2015. Non-stationary hydrological model parameters: a framework based on SOM-B. Hydrological Processes, 29, 3145–3161.10.1002/hyp.10430Search in Google Scholar

Wan, R., Shan, G., 2004. Progress in the hydrological impact and flood response of watershed land use and land cover change. Journal of Lake Science, 16, 3, 258–264.10.18307/2004.0311Search in Google Scholar

Wang, T., Istanbulluoglu, E., Wedin, D., Hanson, P., 2015. Impacts of devegetation on the temporal evolution of soil saturated hydraulic conductivity in a vegetated sand dune area. Environmental Earth Sciences, 73, 1–10.10.1007/s12665-014-3936-8Search in Google Scholar

Yang, X., Ren, L., Yong, B., Wei, Z., 2008. The impact of land use change on hydrological cycle at a semiarid headwater catchment in north china. In: Education Technology & Training & International Workshop on Geoscience & Remote, 2, pp. 508–512.10.1109/ETTandGRS.2008.350Search in Google Scholar

Yüksek, T., Göl, C., Yüksek, F., Yüksel, E.E., 2009. The effects of land-use changes on soil properties: the conversion of alder coppice to tea plantations in the humid northern Black Sea region. African Journal of Agricultural Research, 4, 665–674.Search in Google Scholar

Zhang, Y., Guan, D., Jin, C., Wang, A., Wu, J., Yuan, F., 2014. Impacts of climate change and land use change on runoff of forest catchment in northeast China. Hydrological Processes, 28, 186–196.10.1002/hyp.9564Search in Google Scholar

Zhao, R.J., 1992. The Xinanjiang model applied in China. Journal of Hydrology, 135, 371–381. (In Chinese with English abstract.)10.1016/0022-1694(92)90096-ESearch in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other