Cite

Al-Raoush, R.I., Willson, C.S., 2005. A pore-scale investigation of a multiphase porous media system. Journal of Contaminant Hydrology, 77, 67–89.10.1016/j.jconhyd.2004.12.00115722173Search in Google Scholar

Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Zhan, X., 2013. Digital rock physics benchmarks – part I: Imaging and segmentation. Comput. Geosci., 50, 25–32.10.1016/j.cageo.2012.09.005Search in Google Scholar

ANP – Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. 2018. Anuário estatístico brasileiro do petróleo, gás natural e biocombustíveis: 2018. Available at www.anp.gov.br/publicacoes/anuarioestatistico/anuario-estatistico-2018.Search in Google Scholar

Ayachit, U., 2015. The ParaView Guide: A Parallel Visualization Application, Kitware. ISBN 978-1930934306Search in Google Scholar

Azambuja Filho, N.C., Arienti, L.M., Cruz, F.E.G., 1998. Guidebook to the rift-drift Sergipe-Alagoas passive margin basin, Brazil. In: AAPG International Conference & Exhibition, 1998, Rio de Janeiro, Brazil, AAPG/PETROBRAS.Search in Google Scholar

Blunt, M.J. 2001. Flow in porous media – pore-network models and multiphase flow. Current Opinion in Colloid & Interface Science, 6, 3, 197–207.Search in Google Scholar

Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C., 2013. Pore-scale imaging and modelling. Adv. Water Resour., 51, 197–216.10.1016/j.advwatres.2012.03.003Search in Google Scholar

Buades, A., Coll, B., Morel, J.L., 2005. A non local algorithm for image denoising. IEEE Int. Conf. Computer Vision and Pattern Recognition, CVPR 2005, 2, 60–65.Search in Google Scholar

Bultreys, T., Van Hoorebeke, L., Cnudde, V., 2015. Multi-scale, micro-computed tomography-based pore network models to simulate drainage in heterogeneous rocks. Adv. Water Resour., 78, 36–49.10.1016/j.advwatres.2015.02.003Search in Google Scholar

Bultreys, T., De Boever, W., Cnudde, V., 2016. Imaging and image-based fluid transport modeling at the pore scale in geological materials: A practical introduction to the current state-of-the-art. Earth-Sci. Rev., 155, 93–128.10.1016/j.earscirev.2016.02.001Search in Google Scholar

Cnudde, V., Boone, M.N., 2013. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Sci. Rev., 123, 1–17.10.1016/j.earscirev.2013.04.003Search in Google Scholar

Campos Neto, O.D.A., Lima, W.S, Cruz, F.G., 2007. Bacia de Sergipe-Alagoas. Boletim de Geociencias da Petrobras, 15, 2, 405–415.Search in Google Scholar

Corbett, P.W., Estrella, R., Rodriguez, A.M., Shoeir, A., Borghi, L., Tavares, A.C., 2016. Integration of cretaceous Morro do Chaves rock properties (NE Brazil) with the Holocene Hamelin Coquina architecture (Shark Bay, Western Australia) to model effective permeability. Petrol. Geosci., 22, 2, 105–122.10.1144/petgeo2015-054Search in Google Scholar

Corbett, P.W.M., Wang, H., Câmara, R.N., Tavares, A.C., Borghi de Almeida, L.F., Perosi, F., Bagueira, R., 2017. Using the porosity exponent (m) and pore-scale resistivity modelling to understand pore fabric types in Coquinas (Barremian-Aptian) of the Morro do Chaves Formation, NE Brazil. Marine and Petroleum Geology, 88, 628–647.10.1016/j.marpetgeo.2017.08.032Search in Google Scholar

Dal Ferro, N., Charrier, P., Morari, F., 2013. Dual-scale μCT assessment of soil structure in a long-term fertilization experiment. Geoderma, 204, 84–93.10.1016/j.geoderma.2013.04.012Search in Google Scholar

De Boever, W., Derluyn, H., Van Loo, D., Van Hoorebeke, L., Cnudde, V., 2015. Data-fusion of high resolution X-ray CT, SEM and EDS for 3D and pseudo-3D chemical and structural characterization of sandstone. Micron, 74, 15–21.10.1016/j.micron.2015.04.00325939085Search in Google Scholar

de Vries, E.T., Raoof, A., van Genuchten, M.T., 2017. Multiscale modelling of dual-porosity media: a computational pore-scale study flow and solute transport. Adv. Water Resour., 105, 82–95.10.1016/j.advwatres.2017.04.013Search in Google Scholar

Doyen, P.M., 1988. Permeability, conductivity, and pore geometry of sandstone. J. Geophys. Res.: Solid Earth, 93, B7, 7729–7740. 10.1029/JB093iB07p07729Search in Google Scholar

Fäy-Gomord, O., Soete, J., Davy, C.A., Janssens, N., Troadec, D., Cazaux, F., Caline, B., Swennen, R., 2017. Tight chalk: Characterization of the 3D pore network by FIB-SEM, towards the understanding of fluid transport. J. Petrol. Sci. Eng., 156, 67–74.10.1016/j.petrol.2017.05.005Search in Google Scholar

Fouard, C., Malandain, G., Prohaska, S., Westerhoff, M., 2006. Blockwise processing applied to brain micro-vascular network study. IEEE Trans. Medical Imaging, 25, 10, 1319.Search in Google Scholar

Ghanbarian, B., Torres-Verdín, C., Skaggs, T.H., 2016. Quantifying tight-gas sandstone permeability via critical path analysis. Adv. Water Res., 92, 316–322.10.1016/j.advwatres.2016.04.015Search in Google Scholar

Ghanbarian, B., Torres-Verdín, C., Lake, L.W., Marder, M., 2018. Gas permeability in unconventional tight sandstones: Scaling up from pore to core. J. Petrol. Sci. Eng., 173, 1163–1172.10.1016/j.petrol.2018.10.057Search in Google Scholar

Goldstein, J.I., Newbury, D.E., Joy, D.C, Lyman, C.E., Echlin, P., Lifshin, E., Sawyer, L., Michael, J., 2003. Scanning Electron Microscopy and X-Ray Microanalysis. 3rd ed. Springer, New York. ISBN 978-1-4615-0215-910.1007/978-1-4615-0215-9_1Search in Google Scholar

Hemes, S., Desbois, G., Urai, J.L., Schröppel, B., Schwarz, J.O., 2015. Multi-scale characterization of porosity in Boom Clay (HADES-level, Mol, Belgium) using a combination of X-ray μ-CT, 2D BIB-SEM and FIB-SEM tomography. Micropor. Mesopor. Mat., 208, 1–20.10.1016/j.micromeso.2015.01.022Search in Google Scholar

Hillier, S., 1994. Pore-lining chlorites in siliciclastic reservoir sandstones: electron microprobe, SEM and XRD data, and implications for their origin. Clay Miner., 29, 665–679.10.1180/claymin.1994.029.4.20Search in Google Scholar

Iassonov, P., Gebrenegus, T., Tuller, M., 2009. Segmentation of X-ray computed tomography images of porous materials: A crucial step for characterization and quantitative analysis of pore structures. Water Resour. Res., 45, 9–20.10.1029/2009WR008087Search in Google Scholar

Jafari, S., Yamamoto, R., Rahnama, M., 2011. Lattice-Boltzmann method combined with smoothed-profile method for particulate suspensions. Phys. Rev. E., 83, 2, 026702.10.1103/PhysRevE.83.02670221405925Search in Google Scholar

Joekar-Niasar, V., Hassanizadeh, S.M., 2012. Analysis of fundamentals of two-phase flow in porous media using dynamic pore-network models: a review. Crit. Rev. Environ. Sci. Technol., 42, 1895–1976.10.1080/10643389.2011.574101Search in Google Scholar

Katz, A.J., Thompson, A.H., 1986. Quantitative prediction of permeability in porous rock. Physical Rev. B, 34, 11, 8179.Search in Google Scholar

Kaczmarczyk, J., Dohnalik M., Zalewska, J., 2011. Evaluation of Carbonate Rock Permeability, with the Use of X-ray Computed Microtomography. Nafta-Gaz Rok, 67, 4, 233–239.Search in Google Scholar

Kittler, J., Illingworth, J., 1986. Minimum error thresholding: Pattern recognition, 19, 1, 41–47. https://doi.org/10.1016/0031-3203(86)90030-010.1016/0031-3203(86)90030-0Open DOISearch in Google Scholar

Luna, J, Perosi, F.A., Dos Santos Ribeiro, M.G., Souza, A., Boyd, A., De Almeida, L.F.B, Corbett, P.W.M., 2016. Petrophysical rock typing of Coquinas from the Morro do Chaves Formation, Sergipe-Alagoas Basin (Northeast Brazil). Braz. J. Geophys., 34, 4, 509–521.10.22564/rbgf.v34i4.883Search in Google Scholar

Machado, A.C., Teles, A.P., Pepin, A., Bize-Forest, N., Lima, I., Lopes, R.T., 2016. Porous media investigation before and after hydrochloric acid injection on a pre-salt carbonate coquinas sample. Applied Radiation and Isotopes, 110,160–163.10.1016/j.apradiso.2016.01.00526794261Search in Google Scholar

Newbury, E.D., Ritchie, N.W.M., 2013. Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative? Scanning, 35, 141–168.10.1002/sca.2104122886950Search in Google Scholar

Rabbani, A., Assadi, A., Kharrat, R., Dashti, N., Ayatollahi, S., 2017. Estimation of carbonates permeability using pore network parameters extracted from thin section images and comparison with experimental data. J. Nat. Gas Sci. Eng., 42, 85–98.10.1016/j.jngse.2017.02.045Search in Google Scholar

Ramstad, T., Øren, P.E., Bakke, S., 2010. Simulation of two-phase flow in reservoir rocks using a lattice Boltzmann method. Soc. Pet. Eng. J., 15, 917–927.10.2118/124617-PASearch in Google Scholar

Raoof, A., Hassanizadeh, S.M., 2010. A new method for generating pore-network models of porous media. Transp. Porous Media, 81, 3, 391–407.10.1007/s11242-009-9412-3Search in Google Scholar

Raoof, A., Hassanizadeh, S.M., Leijnse, A., 2010. Upscaling transport of adsorbing solutes in porous media: pore-network modeling. Va-dose Zone J., 9, 3, 624–636.10.2136/vzj2010.0026Search in Google Scholar

Raoof, A., Hassanizadeh, S.M., 2012. A new formulation for pore-network modeling of two-phase flow. Water Resour. Res., 48, 1.10.1029/2010WR010180Search in Google Scholar

Raoof, A., Nick, H.M., Hassanizadeh, S.M., Spiers, C.J., 2013. PoreFlow: A complex pore-network model for simulation of reactive transport in variably saturated porous media. Comp. Geosci., 61,160–174.10.1016/j.cageo.2013.08.005Search in Google Scholar

Sezgin, M., Sankur, B., 2004. Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging, 13, 1, 146–165.10.1117/1.1631315Search in Google Scholar

Shah, S.M., Gray, F., Crawshaw, J.P., Boek, E.S., 2015. Microcomputed tomography porescale study of flow in porous media: effect of voxel resolution. Adv. Water Resour., 95, 276–287.10.1016/j.advwatres.2015.07.012Search in Google Scholar

Tavares, A.C., Borghi, L., Corbett, P., Nobre-Lopes, J., Câmara, R., 2015. Facies and depositional environments for the coquinas of the Morro do Chaves Formation, Sergipe-Alagoas Basin, defined by taphonomic and compositional criteria. Braz. J. Geol., 45, 3, 415–429.10.1590/2317-488920150030211Search in Google Scholar

Thijssen, J., 2007. Computational Physics. Cambridge University Press, Cambridge. ISBN 9781139171397. https://doi.org/10.1017/CBO978113917139710.1017/CBO9781139171397Search in Google Scholar

Thompson, D.L., Stilwell, J.D., Hall, M., 2015. Lacustrine carbonate reservoirs from Early Cretaceous rift lakes of Western Gondwana: Pre-Salt coquinas of Brazil and West Africa. Gondwana Res., 28, 26–51.10.1016/j.gr.2014.12.005Search in Google Scholar

Vik, B., Bastesen, E., Skauge, A., 2013. Evaluation of representative elementary volume for a vuggy carbonate rock – Part I: Porosity, permeability, and dispersivity. J. Petrol. Sci. Eng., 112, 36–47.10.1016/j.petrol.2013.03.029Search in Google Scholar

Wildenschild, D., Vaz, C.M.P, Rivers, M.L., Rikard, D., Christensen, B.S.B., 2002. Using X-ray Computed Tomography in Hydrology: Systems, Resolutions, and Limitations. J. Hydrol., 267, 3, 285–297.10.1016/S0022-1694(02)00157-9Search in Google Scholar

Wildenschild, D., Sheppard, A.P., 2013. X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in sub-surface porous medium systems. Adv. Water Resour., 50, 217–246.10.1016/j.advwatres.2012.07.018Search in Google Scholar

Wojdyr, M., 2010. Fityk: a general-purpose peak fitting program. J. Appl. Crystall., 43, 5, 1126–1128.10.1107/S0021889810030499Search in Google Scholar

Zhang, D., Zhang, R., Chen, S., Soll, W.E., 2010. Pore scale study of flow in porous media: Scale dependency, REV, and statistical REV. Geophys. Res. Lett., 27, 8, 1195–1198.10.1029/1999GL011101Search in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other