Cite

Aberle, J., Järvelä, J., 2015. Hydrodynamics of vegetated channels, In Rivers – physical, fluvial and environmental processes. In: Rowiński, P., Radecki-Pawlik, A. (Eds.): GeoPlanet: Earth and Planetary Sciences, Springer International Publishing, pp. 519–541. DOI: 10.1007/978-3-319-17719-9.10.1007/978-3-319-17719-9Open DOISearch in Google Scholar

Ackerman, J., Okubo, A., 1993. Reduced mixing in marine macrophyte canopy. Funct. Ecol., 7, 305–309.10.2307/2390209Open DOISearch in Google Scholar

Carollo, F.G., Ferro, V., Termini, D., 2002. Flow velocity measurment in vegetated Channels. J. Hydraul. Eng., 128, 7, 664–673. DOI: 10.1061/(ASCE)0733-94292002128:7(664).10.1061/(ASCE)0733-94292002128:7(664)Open DOISearch in Google Scholar

Cheng, Z., Constantinescu, S.G., 2015. For field structure of turbulent shallow mixing layers between parallel streams. In: EProceedings of the 36th IAHR World Congress. IAHR, The Hague, The Netherlands.Search in Google Scholar

Chu, V.H., Babarutsi, S., 1988. Confinement and bed friction effects in shallow turbulent mixing layers. J. Hydraul. Eng., 114, 1257–1274.10.1061/(ASCE)0733-9429(1988)114:10(1257)Search in Google Scholar

Clarke, S.J., 2002. Vegetation growth in rivers: influences upon sediment and nutrient dynamics. Prog. Phys. Geog., 26, 2, 95–106.10.1191/0309133302pp324raOpen DOISearch in Google Scholar

Ghisalberti, M., Nepf, H., 2002. Mixing layers and coherent structures in vegetated aquatic flows. J. Geophys. Res., 107(C2). DOI: 10.1029/2001JC000871.10.1029/2001JC000871Open DOISearch in Google Scholar

Ghisalberti, M., Nepf, H.M., 2004. The limited growth of vegetated shear layers. Water Resour. Res., 40, W07502. DOI: 10.1029/2003WR002776.10.1029/2003WR002776Open DOISearch in Google Scholar

Ghisalberti, M., Nepf, H.M., 2006. The structure of the shear layer inflows over rigid and flexible canopies. Environ. Fluid Mech., 6, 277–301.10.1007/s10652-006-0002-4Open DOISearch in Google Scholar

Goring, D.G., Nikora, V.I., 2002. Despiking acoustic Doppler velocimeter data. J. Hydraul. Eng., 128, 1, 117–126.10.1061/(ASCE)0733-9429(2002)128:1(117)Search in Google Scholar

Hsieh, P.C., Shiu, Y.S., 2006. Analytical solutions for water flow passing over a vegetal area. Adv. Water. Resour., 29, 9, 1257–1266.10.1016/j.advwatres.2005.10.004Open DOISearch in Google Scholar

Järvelä, J., 2002. Flow resistance of flexible and stiff vegetation: a flume study with natural plants. J. Hydrol., 269, 44–54.10.1016/S0022-1694(02)00193-2Search in Google Scholar

Kirkil, G., 2015. Detached eddy simulation of shallow mixing layerdevelopment between parallel streams. J. Hydro-Environ. Res., 9, 2, 304–313.10.1016/j.jher.2014.10.003Search in Google Scholar

Koch, E., W., Gust, G., 1999. Water flow in tide- and wave-dominated beds of the seagrass Thalassia testundinum. Marine Ecol. Prog., 184, 63–72.10.3354/meps184063Search in Google Scholar

Kouwen, N., Unny, T.E., Hill. H.M, 1969. Flow retardance in vegetated channels. J. Irrig. Drain. Div., 95, 2, 329–342.10.1061/JRCEA4.0000652Search in Google Scholar

Kubrak, E., Kubrak, J., Rowiński, P.M., 2008. Vertical velocity distributions through and above submerged, flexible vegetation. Hydrolog. Sci. J., 53, 4, 905–920. DOI: 10.1623/hysj.53.4.905.10.1623/hysj.53.4.905Open DOISearch in Google Scholar

Kubrak, E., Kubrak, J., Rowiński, P.M., 2012. Influence of a method of evaluation of the curvature of flexible vegetation elements on the vertical distributions of flow velocities. Acta Geophys., 60, 4, 1098–1119. DOI: https://doi.org/10.2478/s11600-011-0077-2.10.2478/s11600-011-0077-2Open DOISearch in Google Scholar

Kubrak, E., Kubrak, J., Rowiński, P.M., 2013. Application of one-dimensional model to calculate water velocity distributions over elastic elements simulating Canadian waterweed plants (Elodea Canadensis). Acta Geophys., 61, 1, 194–210. DOI: https://doi.org/10.2478/s11600-012-0051-7.10.2478/s11600-012-0051-7Open DOISearch in Google Scholar

Marjoribanks, T., Parson, D.R., Lane, S., 2016. Does the canopy mixing layer model apply to hightly flexible aquatic vegetation? Insights from numerical modeling. Environ. Fluid Mech., 17, 2, 277–301. DOI: 10.1007/s10652-016-9482-z.10.1007/s10652-016-9482-z708968332226354Open DOISearch in Google Scholar

Marjoribanks, T.I., Hardy, R.J., Lane, S.N., Tancock, M.J., 2016. Patch-scale representation of vegetation within hydraulic models. Earth Surf. Process. Landforms., 42, 699–710. DOI: 10.1002/esp.4015.10.1002/esp.4015Open DOISearch in Google Scholar

Michalke, A., 1965. spatially growing disturbances in an inviscid shear layer. J. Fluid. Mech., 23, 521–544.10.1017/S0022112065001520Open DOISearch in Google Scholar

Nepf, H., Vivoni, E., 2000. Flow structure in depth-limited, vegetated flow. J. Geophys. Res., 105(C12), 28547–28557. DOI: 10.1029/2000JC900145.10.1029/2000JC900145Open DOISearch in Google Scholar

Nepf, H., 2012. Hydodynamic of vegetated channels. J. Hydraul. Res., 50, 3, 262–279.10.1080/00221686.2012.696559Open DOISearch in Google Scholar

Nepf, H.M., Koch, E.W., 1999. Vertical secondary flows in submersed plant-like arrays. Limnol. Oceanogr., 44, 1072–1080.10.4319/lo.1999.44.4.1072Search in Google Scholar

Pope, S.B., 2000. Turbulent Flows. Cambridge University Press.10.1017/CBO9780511840531Search in Google Scholar

Rodi, W., 1980. Turbulence Models and Their Application in Hydraulics. IAHR Monograph Series. Balkema, Rotterdam.Search in Google Scholar

Schoelynck, J., DeGroote, T., Bal, K., Vandenbruwaene, W., Meire, P., Temmerman, S., 2012. Self-organised patchiness and scale-dependent bio-geomorphic feedbacks in aquatic river vegetation. Ecography, 35, 760–768. DOI: 10.1111/j.1600-0587.2011.07177.x.10.1111/j.1600-0587.2011.07177.xOpen DOISearch in Google Scholar

Sinsicalchi, F., Niora, V., Albera, J., 2012. Plant patch hydrodynamics in streams: Mean flow, turbulence and drag forces. Water. Resour. Res., 48, W01513.10.1029/2011WR011050Search in Google Scholar

Sukhodolov, A., Sukhodolova, T., 2006. Evolution of mixing layers in turbulent flow over submerged vegetation: Field experiments and measurement study. River flow. In: Ferreira, R.M.L. et al. (Eds.): Proc. 3rd Int. Conf. on Fluvial Hydraulics. Lisbon, Portugal, pp. 525–534.10.1201/9781439833865.ch54Search in Google Scholar

Sukhodolov, A.N., Sukhodolova, T.A., 2010. Case study: Effect of submerged aquatic aquatic plants on turbulence structure in Lowland River. J. Hydraul. Eng. ASCE, 136, 7, 434–446.10.1061/(ASCE)HY.1943-7900.0000195Search in Google Scholar

Sukhodolov, A.N., Schnauder, I., Uijttewaal, W.S.J., 2010. Dynamics of shallow lateral shear layers: Experimental study in a river with a sandy bed. Water Resour. Res., 46, W11519. DOI: 10.1029/2010WR009245.10.1029/2010WR009245Open DOISearch in Google Scholar

Sukhodolova, T. A., Sukhodolov. A. N., 2012. Vegetated mixing layer around a finite-size patch of submerged plants: 1. Theory and field experiments. Water. Resour. Res., 40, W10533.10.1029/2011WR011804Search in Google Scholar

Sukhodolov, A., Sukhodolova,T., 2012. Vegetated mixing layer arounda finite-size patch of submerged plants: 2. Turbulence and coherent structures. Water Resour. Res., 48, W12506, DOI: 10.1029/2011WR011805.10.1029/2011WR011805Open DOISearch in Google Scholar

Wang, G., Shi, F., Chen, P.P., Sui, J., 2015. Impact of bridge pier on the stability of ice jam. J. Hydrodyn., 27, 6, 865–871.10.1016/S1001-6058(15)60549-2Search in Google Scholar

White, B., Nepf, H., 2007. Shear instability and coherent structures in shallow flow adjacent to porous layers. J. Fluid. Mech., 593, 1–32.10.1017/S0022112007008415Search in Google Scholar

Wolman, M.G., 1954. A method of sampling coarse river bed material. Trans. AGU, 35, 6, 951–956.10.1029/TR035i006p00951Search in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other