Cite

Clift, R., Clift, D.H.M., 1981. Continuous measurement of the density of flowing slurries. International Journal of Multiphase Flow, 7, 5, 555–561.10.1016/0301-9322(81)90058-6Open DOISearch in Google Scholar

Doron, M., Simkhis, M., Barnea, D., 1997. Flow of solid-liquid mixtures in inclined pipes. International Journal of Multiphase Flow, 23, 313–323.10.1016/S0301-9322(97)80946-9Open DOISearch in Google Scholar

Durand, R., Condolios, E., 1952. Étude expérimentale du refoulement des matériaux en conduite. 2émes Journées de l´Hydralique, SHF, Grenoble.Search in Google Scholar

Gibert, R., 1960. Transport hydraulique et refoulement des mixtures en conduites. Annales Des Ponts et Chaussees, 12, 307–374.Search in Google Scholar

Gopaliya, M.K., Kaushal, D.R., 2016. Modeling of sand-water slurry flow through horizontal pipe using CFD. Journal of Hydrology and Hydromechanics, 64, 3, 261–272.10.1515/johh-2016-0027Open DOISearch in Google Scholar

Hashimoto, H., Noda, L., Masuyama, T., Kawashima, T., 1980. Influence of Pipe Inclination on Deposit Velocity, Proc. HYDROTRANSPORT 7, BHR Group, Sendai, Japan, 4–6 November 1980, 231–244.Search in Google Scholar

De Hoog, E., in‘t Veld, M., Van Wijk, J., Talmon, A., 2017. An experimental study into flow assurance of coarse inclined slurries. In: Proceedings of Transport and Sedimentation of Solids Particles, Prague, Czech Republic.Search in Google Scholar

Krupicka, J., Matousek, V., 2014. Gamma-ray-based measurement of concentration distribution in pipe flow of settling slurry: vertical profiles and tomographic maps. J. Hydrology and Hydromechanics, 62, 2,126–132.10.2478/johh-2014-0012Search in Google Scholar

Matousek, V., 1996. Internal structure of slurry flow in inclined pipe. Experiments and mechanistic modelling, Proc. HYDROTRANSPORT 13, BHRG, Cranfield, UK, 1996, 187–210.Search in Google Scholar

Matousek, V., 1997. Flow Mechanism of Sand-Water Mixtures in Pipelines. PhD Thesis. Delft University Press, Delft.Search in Google Scholar

Matousek, V., 2002. Pressure drops and flow patterns in sand–mixture pipes. Experimental Thermal and Fluid Science, 26, 693–702.10.1016/S0894-1777(02)00176-0Search in Google Scholar

Matousek, V., Krupicka, J., Kesely, M., 2018. A layered model for inclined pipe flow of settling slurry. Powder Technology, 333, 317–326.10.1016/j.powtec.2018.04.021Search in Google Scholar

Spelay, R.B., Gillies, R.G., Hashemi, S.A., Sanders, R.S., 2016. Effect of pipe inclination onthe deposition velocity of settling slurries. The Canadian Journal of Chemical Engineering, 94, 1032–1039.10.1002/cjce.22493Open DOISearch in Google Scholar

Shook, C.A., Roco, M.C., 1991. Slurry Flow. Principles and Practice. Butterworth-Heinemann, Stoneham, USA.Search in Google Scholar

Thomas, A.D., Cowper, N.T., 2017. The design of slurry pipelines – historical aspects. In: Proc. HYDROTRANSPORT 20, Melbourne, Australia, pp. 7–22.Search in Google Scholar

Vlasak, P., Chara, Z., 1999. Laminar and turbulent flow experiments with yield-power law slurries. Powder Technology, 104, 200–206.10.1016/S0032-5910(99)00095-9Open DOISearch in Google Scholar

Vlasak, P., Chara, Z., 2009. Conveying of solid particles in Newtonian and non-Newtonian carriers. Part. Sci. Technol., 27, 5, 428–443.10.1080/02726350903130019Open DOISearch in Google Scholar

Vlasak, P., Kysela, B., Chara, Z., 2012. Flow structure of coarse-grained slurry in horizontal pipe. Journal of Hydrology and Hydromechanics, 60, 2, 115–124.10.2478/v10098-012-0010-7Open DOISearch in Google Scholar

Vlasak, P., Chara, Z., Krupicka, J., Konfrst, J., 2014. Experimental investigation of coarse particles-water mixture flow in horizontal and inclined pipes. Journal of Hydrology and Hydromechanics, 62, 3, 241–247.10.2478/johh-2014-0022Open DOISearch in Google Scholar

Vlasak, P., Chara, Z., Konfrst, J., Krupicka, J., 2016. Distribution of concentration of coarse particle-water mixture in horizontal smooth pipe. Canadian Journal of Chemical Engineering, 94, 1040–1047.10.1002/cjce.22484Open DOISearch in Google Scholar

Vlasak, P., Chara, Z., Konfrst, J., 2017. Flow behaviour and local concentration of course particles-water mixture in inclined pipes. Journal of Hydrology and Hydromechanics, 65, 2, 183–191.10.1515/johh-2017-0001Open DOISearch in Google Scholar

VanWijk, J.M., Talmon, A.M., Van Rhee, C., 2016. Stability of vertical hydraulic transport processes for deep ocean mining: an experimental study, Ocean Eng., 125, 203–213.10.1016/j.oceaneng.2016.08.018Search in Google Scholar

Wilson, K.C., 1976. A unified physically based analysis of solid-liquid pipeline flow. In: Stephens, H.S., Streat, M., Clark, J., Coles, N.G. (Eds.): Proc. HYDROTRANSPORT 4. B.H.R.A., Cranfield, UK, Pap. A1.Search in Google Scholar

Wilson, K.C., 1979. Deposition-limit nomograms for particles of various densities in pipeline flow. In: Proc. HYDRO-TRANSPORT 6, BHRA, Cranfield, UK, pp. 1–12.Search in Google Scholar

Wilson, K.C., Byberg, S.P., 1987. Stratification-ratio scaling technique for inclined slurry pipelines. In: Proc. 12th International Conference on Slurry Technology, STA, Washing-ton, USA, pp. 59–64.Search in Google Scholar

Wilson, K.C., Tse, J.K.P., 1984. Deposition limit for coarse-particle transport in inclined pipes. In: Proc. HYDRO-TRANSPORT 9, BHRA Fluid Engineering, Cranfield, UK, pp. 149–169.Search in Google Scholar

Wilson, K.C., Addie, G.R., Sellgren, A., Clift, R., 2006. Slurry Transport Using Centrifugal Pumps. Springer, US.Search in Google Scholar

Worster, R.C., Denny, D.F., 1955. Hydraulic transport of solid materials in pipelines. P. I. Mech. Eng., 169, 563–586.10.1243/PIME_PROC_1955_169_064_02Search in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other